Suppr超能文献

通过多谐原子力显微镜绘制细胞力学异质性。

Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy.

机构信息

School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.

Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.

出版信息

Nat Protoc. 2018 Oct;13(10):2200-2216. doi: 10.1038/s41596-018-0031-8.

Abstract

The goal of mechanobiology is to understand the links between changes in the physical properties of living cells and normal physiology and disease. This requires mechanical measurements that have appropriate spatial and temporal resolution within a single cell. Conventional atomic force microscopy (AFM) methods that acquire force curves pointwise are used to map the heterogeneous mechanical properties of cells. However, the resulting map acquisition time is much longer than that required to study many dynamic cellular processes. Dynamic AFM (dAFM) methods using resonant microcantilevers are compatible with higher-speed, high-resolution scanning; however, they do not directly acquire force curves and they require the conversion of a limited number of instrument observables to local mechanical property maps. We have recently developed a technique that allows commercial AFM systems equipped with direct cantilever excitation to quantitatively map the viscoelastic properties of live cells. The properties can be obtained at several widely spaced frequencies with nanometer-range spatial resolution and with fast image acquisition times (tens of seconds). Here, we describe detailed procedures for quantitative mapping, including sample preparation, AFM calibration, and data analysis. The protocol can be applied to different biological samples, including cells and viruses. The transition from dAFM imaging to quantitative mapping should be easily achievable for experienced AFM users, who will be able to set up the protocol in <30 min.

摘要

力学生物学的目标是理解活细胞物理性质变化与正常生理和疾病之间的联系。这需要在单个细胞内具有适当空间和时间分辨率的机械测量。传统的逐点获取力曲线的原子力显微镜 (AFM) 方法用于绘制细胞不均匀机械性能的图谱。然而,由此产生的图谱采集时间比研究许多动态细胞过程所需的时间长得多。使用共振微悬臂梁的动态 AFM (dAFM) 方法与更高速度、更高分辨率的扫描兼容;然而,它们不能直接获取力曲线,并且需要将有限数量的仪器可观测值转换为局部机械性能图谱。我们最近开发了一种技术,允许配备直接悬臂激励的商用 AFM 系统定量绘制活细胞的粘弹性特性。可以在纳米级空间分辨率和快速图像采集时间(数十秒)下以几个间隔较远的频率获得特性。在这里,我们详细描述了定量映射的过程,包括样品制备、AFM 校准和数据分析。该方案可应用于不同的生物样本,包括细胞和病毒。对于有经验的 AFM 用户来说,从 dAFM 成像到定量映射的转变应该很容易实现,他们可以在 <30 分钟内设置好方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验