Suppr超能文献

在酒精发酵过程中酿酒酵母中挥发性化合物产生的 QTL 定位。

QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation.

机构信息

SPO, INRA, SupAgro, Université de Montpellier, F-34060, Montpellier, France.

MISTEA, INRA, SupAgro, F-34060, Montpellier, France.

出版信息

BMC Genomics. 2018 Mar 1;19(1):166. doi: 10.1186/s12864-018-4562-8.

Abstract

BACKGROUND

The volatile metabolites produced by Saccharomyces cerevisiae during alcoholic fermentation, which are mainly esters, higher alcohols and organic acids, play a vital role in the quality and perception of fermented beverages, such as wine. Although the metabolic pathways and genes behind yeast fermentative aroma formation are well described, little is known about the genetic mechanisms underlying variations between strains in the production of these aroma compounds. To increase our knowledge about the links between genetic variation and volatile production, we performed quantitative trait locus (QTL) mapping using 130 F2-meiotic segregants from two S. cerevisiae wine strains. The segregants were individually genotyped by next-generation sequencing and separately phenotyped during wine fermentation.

RESULTS

Using different QTL mapping strategies, we were able to identify 65 QTLs in the genome, including 55 that influence the formation of 30 volatile secondary metabolites, 14 with an effect on sugar consumption and central carbon metabolite production, and 7 influencing fermentation parameters. For ethyl lactate, ethyl octanoate and propanol formation, we discovered 2 interacting QTLs each. Within 9 of the detected regions, we validated the contribution of 13 genes in the observed phenotypic variation by reciprocal hemizygosity analysis. These genes are involved in nitrogen uptake and metabolism (AGP1, ALP1, ILV6, LEU9), central carbon metabolism (HXT3, MAE1), fatty acid synthesis (FAS1) and regulation (AGP2, IXR1, NRG1, RGS2, RGT1, SIR2) and explain variations in the production of characteristic sensorial esters (e.g., 2-phenylethyl acetate, 2-metyhlpropyl acetate and ethyl hexanoate), higher alcohols and fatty acids.

CONCLUSIONS

The detection of QTLs and their interactions emphasizes the complexity of yeast fermentative aroma formation. The validation of underlying allelic variants increases knowledge about genetic variation impacting metabolic pathways that lead to the synthesis of sensorial important compounds. As a result, this work lays the foundation for tailoring S. cerevisiae strains with optimized volatile metabolite production for fermented beverages and other biotechnological applications.

摘要

背景

酿酒酵母在酒精发酵过程中产生的挥发性代谢产物,主要是酯类、高级醇和有机酸,对发酵饮料(如葡萄酒)的质量和口感起着至关重要的作用。尽管酵母发酵香气形成的代谢途径和基因已经得到很好的描述,但对于这些香气化合物在菌株间产生差异的遗传机制知之甚少。为了增加我们对遗传变异与挥发性产物之间联系的了解,我们使用来自两个酿酒酵母葡萄酒菌株的 130 个 F2 减数分裂分离子进行了数量性状基因座(QTL)作图。分离子通过下一代测序进行个体基因型分析,并在葡萄酒发酵过程中分别表型分析。

结果

使用不同的 QTL 作图策略,我们能够在基因组中鉴定出 65 个 QTL,其中 55 个影响 30 种挥发性次生代谢物的形成,14 个影响糖消耗和中心碳代谢产物的产生,7 个影响发酵参数。对于乙基乳酸酯、辛酸乙酯和丙醇的形成,我们发现每个都有 2 个相互作用的 QTL。在检测到的 9 个区域中,我们通过相互半合子分析验证了 13 个基因对观察到的表型变异的贡献。这些基因参与氮吸收和代谢(AGP1、ALP1、ILV6、LEU9)、中心碳代谢(HXT3、MAE1)、脂肪酸合成(FAS1)和调节(AGP2、IXR1、NRG1、RGS2、RGT1、SIR2),并解释了特征感官酯类(如 2-苯乙醇乙酸酯、2-甲氧基丙基乙酸酯和己酸乙酯)、高级醇和脂肪酸产量的变化。

结论

QTL 的检测及其相互作用强调了酵母发酵香气形成的复杂性。等位基因变体的验证增加了对影响导致合成感官重要化合物的代谢途径的遗传变异的了解。因此,这项工作为定制具有优化挥发性代谢产物生产能力的酿酒酵母菌株奠定了基础,用于发酵饮料和其他生物技术应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bb0/5831830/7e1cec8bff31/12864_2018_4562_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验