Suppr超能文献

非线性常微分方程模型的可识别性及其在病毒动力学中的应用

ON IDENTIFIABILITY OF NONLINEAR ODE MODELS AND APPLICATIONS IN VIRAL DYNAMICS.

作者信息

Miao Hongyu, Xia Xiaohua, Perelson Alan S, Wu Hulin

机构信息

Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 630, Rochester, New York 14642, USA.

出版信息

SIAM Rev Soc Ind Appl Math. 2011 Jan 1;53(1):3-39. doi: 10.1137/090757009.

Abstract

Ordinary differential equations (ODE) are a powerful tool for modeling dynamic processes with wide applications in a variety of scientific fields. Over the last 2 decades, ODEs have also emerged as a prevailing tool in various biomedical research fields, especially in infectious disease modeling. In practice, it is important and necessary to determine unknown parameters in ODE models based on experimental data. Identifiability analysis is the first step in determing unknown parameters in ODE models and such analysis techniques for nonlinear ODE models are still under development. In this article, we review identifiability analysis methodologies for nonlinear ODE models developed in the past one to two decades, including structural identifiability analysis, practical identifiability analysis and sensitivity-based identifiability analysis. Some advanced topics and ongoing research are also briefly reviewed. Finally, some examples from modeling viral dynamics of HIV, influenza and hepatitis viruses are given to illustrate how to apply these identifiability analysis methods in practice.

摘要

常微分方程(ODE)是用于对动态过程进行建模的强大工具,在各种科学领域有着广泛应用。在过去20年里,常微分方程也已成为各种生物医学研究领域中普遍使用的工具,尤其是在传染病建模方面。在实践中,基于实验数据确定常微分方程模型中的未知参数既重要又必要。可识别性分析是确定常微分方程模型中未知参数的第一步,而针对非线性常微分方程模型的此类分析技术仍在发展之中。在本文中,我们回顾了过去一到二十年中开发的非线性常微分方程模型的可识别性分析方法,包括结构可识别性分析、实际可识别性分析和基于灵敏度的可识别性分析。还简要回顾了一些高级主题和正在进行的研究。最后,给出了一些关于HIV、流感和肝炎病毒病毒动力学建模的例子,以说明如何在实践中应用这些可识别性分析方法。

相似文献

8
Extended space method for parameter identifiability of DAE systems.DAE系统参数可识别性的扩展空间方法。
ISA Trans. 2014 Sep;53(5):1476-80. doi: 10.1016/j.isatra.2013.12.014. Epub 2014 Jan 8.

引用本文的文献

1
Exploring dynamical whole-brain models in high-dimensional parameter spaces.探索高维参数空间中的全脑动力学模型。
PLoS One. 2025 May 12;20(5):e0322983. doi: 10.1371/journal.pone.0322983. eCollection 2025.
5
10
The kinetics of SARS-CoV-2 infection based on a human challenge study.基于人体挑战研究的 SARS-CoV-2 感染动力学。
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2406303121. doi: 10.1073/pnas.2406303121. Epub 2024 Nov 7.

本文引用的文献

6
Parameter identifiability and estimation of HIV/AIDS dynamic models.艾滋病动态模型的参数可识别性与估计
Bull Math Biol. 2008 Apr;70(3):785-99. doi: 10.1007/s11538-007-9279-9. Epub 2008 Feb 5.
7
The Monte Carlo method.蒙特卡罗方法。
J Am Stat Assoc. 1949 Sep;44(247):335-41. doi: 10.1080/01621459.1949.10483310.
9
Practical identifiability of HIV dynamics models.HIV动力学模型的实际可识别性。
Bull Math Biol. 2007 Nov;69(8):2493-513. doi: 10.1007/s11538-007-9228-7. Epub 2007 Jun 8.
10
Optimal drug treatment regimens for HIV depend on adherence.针对艾滋病毒的最佳药物治疗方案取决于依从性。
J Theor Biol. 2007 Jun 7;246(3):499-509. doi: 10.1016/j.jtbi.2006.12.038. Epub 2007 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验