Suppr超能文献

通过评估异位转录因子与基因组结合的最早事件,了解细胞转化为多能性的障碍。

Understanding impediments to cellular conversion to pluripotency by assessing the earliest events in ectopic transcription factor binding to the genome.

机构信息

Institute for Regenerative Medicine, Epigenetics Program and Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Cell Cycle. 2013 May 15;12(10):1487-91. doi: 10.4161/cc.24663. Epub 2013 Apr 19.

Abstract

In all known cases of transcription factor (TF)-based reprogramming, the process is relatively slow and inefficient. For example, it takes about a month for the ectopic expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM) to fully reprogram human somatic cells to pluripotency. Furthermore, recent studies indicate that there is an initial stochastic phase, whereby random cells in the converting population begin to express a few genes of the new fate, followed by a so-called deterministic phase, whereby activation of a network for the new fate leads to homogeneous changes in gene expression patterns within a subset of the cell population. We recently mapped the initial interactions between OSKM factors and the human genome during the first 48 h of human fibroblast conversion to pluripotency. Unlike that reported in ES and iPS cells, distal enhancer sites in closed chromatin dominate the initial O, S, K and M binding distribution, showing that promoter occupancy is a later event in reprogramming. O, S and K act as pioneer factors for c-Myc, and c-Myc enhances the engagement of O, S and K. Despite the ability of OSKM to access closed chromatin, megabase-scale chromatin regions in somatic cells, referred to as "differentially bound regions" (DBRs), are remarkably refractory to OSKM binding at 48 h, though they become bound in pluripotent cells. These DBRs are highly enriched for the repressive H3K9me3 mark and span genes at the top of the deterministic hierarchy. Transient knockdown of the relevant chromatin modifiers allows access of OSKM to DBRs and a more rapid and efficient conversion to pluripotency. Thus, overcoming DBR barriers helps explain the conversion from a stochastic to a deterministic phase of transcription factor-mediated cell type conversion.

摘要

在所有已知的转录因子(TF)重编程案例中,该过程相对较慢且效率低下。例如,将转录因子 Oct4、Sox2、Klf4 和 c-Myc(OSKM)异位表达以使人类体细胞完全重编程为多能性需要大约一个月的时间。此外,最近的研究表明,存在初始随机阶段,在此阶段,转化群体中的随机细胞开始表达新命运的少数几个基因,然后是所谓的确定性阶段,在此阶段,新命运的网络的激活导致细胞群体中的一个子集内的基因表达模式发生均匀变化。我们最近在人类成纤维细胞向多能性转化的前 48 小时内绘制了 OSKM 因子与人类基因组之间的初始相互作用。与 ES 和 iPS 细胞中报道的情况不同,封闭染色质中的远端增强子位点主导着初始 O、S、K 和 M 结合分布,表明启动子占据是重编程中的后期事件。O、S 和 K 作为 c-Myc 的先驱因子,c-Myc 增强了 O、S 和 K 的参与。尽管 OSKM 能够访问封闭染色质,但体细胞中兆碱基规模的染色质区域,称为“差异结合区域”(DBR),在 48 小时时对 OSKM 结合具有明显的抗性,尽管它们在多能细胞中结合。这些 DBR 高度富含抑制性 H3K9me3 标记,并跨越确定性层次结构顶部的基因。相关染色质修饰物的瞬时敲低允许 OSKM 进入 DBR,并更快速有效地转化为多能性。因此,克服 DBR 障碍有助于解释转录因子介导的细胞类型转换从随机到确定性阶段的转变。

相似文献

2
Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome.
Cell. 2012 Nov 21;151(5):994-1004. doi: 10.1016/j.cell.2012.09.045. Epub 2012 Nov 15.
3
C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells.
Nature. 2014 Feb 13;506(7487):235-9. doi: 10.1038/nature12885. Epub 2013 Dec 15.
5
Cooperative Binding of Transcription Factors Orchestrates Reprogramming.
Cell. 2017 Jan 26;168(3):442-459.e20. doi: 10.1016/j.cell.2016.12.016. Epub 2017 Jan 19.
6
ONSL and OSKM cocktails act synergistically in reprogramming human somatic cells into induced pluripotent stem cells.
Mol Hum Reprod. 2014 Jun;20(6):538-49. doi: 10.1093/molehr/gau012. Epub 2014 Feb 5.
8
Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells.
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19756-61. doi: 10.1073/pnas.0809321105. Epub 2008 Dec 5.
9
NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction.
Nat Cell Biol. 2018 Aug;20(8):900-908. doi: 10.1038/s41556-018-0136-x. Epub 2018 Jul 16.
10
The interplay of chromatin and transcription factors during cell fate transitions in development and reprogramming.
Biochim Biophys Acta Gene Regul Mech. 2019 Sep;1862(9):194407. doi: 10.1016/j.bbagrm.2019.194407. Epub 2019 Jul 26.

引用本文的文献

2
Inducing human retinal pigment epithelium-like cells from somatic tissue.
Stem Cell Reports. 2022 Feb 8;17(2):289-306. doi: 10.1016/j.stemcr.2021.12.008. Epub 2022 Jan 13.
3
Intrinsic mechanisms of neuronal axon regeneration.
Nat Rev Neurosci. 2018 Jun;19(6):323-337. doi: 10.1038/s41583-018-0001-8.
5
Pluripotent Stem Cells: Current Understanding and Future Directions.
Stem Cells Int. 2016;2016:9451492. doi: 10.1155/2016/9451492. Epub 2015 Dec 20.
7
Reprogramming by lineage specifiers: blurring the lines between pluripotency and differentiation.
Curr Opin Genet Dev. 2014 Oct;28:57-63. doi: 10.1016/j.gde.2014.09.009. Epub 2014 Oct 14.
9
Mathematical approaches to modeling development and reprogramming.
Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5076-82. doi: 10.1073/pnas.1317150111. Epub 2014 Mar 20.
10
Mechanisms for enhancing cellular reprogramming.
Curr Opin Genet Dev. 2014 Apr;25:101-9. doi: 10.1016/j.gde.2013.12.007. Epub 2014 Mar 4.

本文引用的文献

1
A central role for TFIID in the pluripotent transcription circuitry.
Nature. 2013 Mar 28;495(7442):516-9. doi: 10.1038/nature11970. Epub 2013 Mar 17.
2
Genome-wide chromatin state transitions associated with developmental and environmental cues.
Cell. 2013 Jan 31;152(3):642-54. doi: 10.1016/j.cell.2012.12.033. Epub 2013 Jan 17.
4
H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs.
Nat Genet. 2013 Jan;45(1):34-42. doi: 10.1038/ng.2491. Epub 2012 Dec 2.
5
Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome.
Cell. 2012 Nov 21;151(5):994-1004. doi: 10.1016/j.cell.2012.09.045. Epub 2012 Nov 15.
6
c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells.
Cell. 2012 Sep 28;151(1):68-79. doi: 10.1016/j.cell.2012.08.033.
7
Transcriptional amplification in tumor cells with elevated c-Myc.
Cell. 2012 Sep 28;151(1):56-67. doi: 10.1016/j.cell.2012.08.026.
9
Epigenetic obstacles encountered by transcription factors: reprogramming against all odds.
Curr Opin Genet Dev. 2012 Oct;22(5):409-15. doi: 10.1016/j.gde.2012.08.002. Epub 2012 Aug 23.
10
Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2.
Nature. 2012 Aug 30;488(7413):652-5. doi: 10.1038/nature11333.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验