Institute for Regenerative Medicine, Epigenetics Program and Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Cell Cycle. 2013 May 15;12(10):1487-91. doi: 10.4161/cc.24663. Epub 2013 Apr 19.
In all known cases of transcription factor (TF)-based reprogramming, the process is relatively slow and inefficient. For example, it takes about a month for the ectopic expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM) to fully reprogram human somatic cells to pluripotency. Furthermore, recent studies indicate that there is an initial stochastic phase, whereby random cells in the converting population begin to express a few genes of the new fate, followed by a so-called deterministic phase, whereby activation of a network for the new fate leads to homogeneous changes in gene expression patterns within a subset of the cell population. We recently mapped the initial interactions between OSKM factors and the human genome during the first 48 h of human fibroblast conversion to pluripotency. Unlike that reported in ES and iPS cells, distal enhancer sites in closed chromatin dominate the initial O, S, K and M binding distribution, showing that promoter occupancy is a later event in reprogramming. O, S and K act as pioneer factors for c-Myc, and c-Myc enhances the engagement of O, S and K. Despite the ability of OSKM to access closed chromatin, megabase-scale chromatin regions in somatic cells, referred to as "differentially bound regions" (DBRs), are remarkably refractory to OSKM binding at 48 h, though they become bound in pluripotent cells. These DBRs are highly enriched for the repressive H3K9me3 mark and span genes at the top of the deterministic hierarchy. Transient knockdown of the relevant chromatin modifiers allows access of OSKM to DBRs and a more rapid and efficient conversion to pluripotency. Thus, overcoming DBR barriers helps explain the conversion from a stochastic to a deterministic phase of transcription factor-mediated cell type conversion.
在所有已知的转录因子(TF)重编程案例中,该过程相对较慢且效率低下。例如,将转录因子 Oct4、Sox2、Klf4 和 c-Myc(OSKM)异位表达以使人类体细胞完全重编程为多能性需要大约一个月的时间。此外,最近的研究表明,存在初始随机阶段,在此阶段,转化群体中的随机细胞开始表达新命运的少数几个基因,然后是所谓的确定性阶段,在此阶段,新命运的网络的激活导致细胞群体中的一个子集内的基因表达模式发生均匀变化。我们最近在人类成纤维细胞向多能性转化的前 48 小时内绘制了 OSKM 因子与人类基因组之间的初始相互作用。与 ES 和 iPS 细胞中报道的情况不同,封闭染色质中的远端增强子位点主导着初始 O、S、K 和 M 结合分布,表明启动子占据是重编程中的后期事件。O、S 和 K 作为 c-Myc 的先驱因子,c-Myc 增强了 O、S 和 K 的参与。尽管 OSKM 能够访问封闭染色质,但体细胞中兆碱基规模的染色质区域,称为“差异结合区域”(DBR),在 48 小时时对 OSKM 结合具有明显的抗性,尽管它们在多能细胞中结合。这些 DBR 高度富含抑制性 H3K9me3 标记,并跨越确定性层次结构顶部的基因。相关染色质修饰物的瞬时敲低允许 OSKM 进入 DBR,并更快速有效地转化为多能性。因此,克服 DBR 障碍有助于解释转录因子介导的细胞类型转换从随机到确定性阶段的转变。