Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR1704, Université de Strasbourg, Illkirch 67404, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR1704, Université de Strasbourg, Illkirch 67404, France Present Address: Aix Marseille Université, INSERM, GMGF UMR_F 910, 13385 Marseille, France.
Mol Hum Reprod. 2014 Jun;20(6):538-49. doi: 10.1093/molehr/gau012. Epub 2014 Feb 5.
The advent of human induced pluripotent stem cells (hiPSC) is revolutionizing many research fields including cell-replacement therapy, drug screening, physiopathology of specific diseases and more basic research such as embryonic development or diseases modeling. Despite the large number of reports on reprogramming methods, techniques in use remain globally inefficient. We present here a new optimized approach to improve this efficiency. After having tested different monocistronic vectors with poor results, we adopted a polycistronic cassette encoding Thomson's cocktail OCT4, NANOG, SOX2 and LIN28 (ONSL) separated by 2A peptides. This cassette was tested in various vector backbones, based on lentivirus or retrovirus under a LTR or EF1 alpha promoter. This allowed us to show that ONSL-carrier retrovectors reprogrammed adult fibroblast cells with a much higher efficiency (up to 0.6%) than any other tested. We then compared the reprogramming efficiencies of two different polycistronic genes, ONSL and OCT4, SOX2, KLF4 and cMYC (OSKM) placed in the same retrovector backbone. Interestingly, in this context ONSL gene reprograms more efficiently than OSKM but OSKM reprograms faster suggesting that the two cocktails may reprogram through distinct pathways. By equally mixing RV-LTR-ONSL and RV-LTR-OSKM, we indeed observed a remarkable synergy, yielding a reprogramming efficiency of >2%. We present here a drastic improvement of the reprogramming efficiency, which opens doors to the development of automated and high throughput strategies of hiPSC production. Furthermore, non-integrative reprogramming protocols (i.e. mRNA) may take advantage of this synergy to boost their efficiency.
人类诱导多能干细胞(hiPSC)的出现正在彻底改变许多研究领域,包括细胞替代疗法、药物筛选、特定疾病的病理生理学以及更多的基础研究,如胚胎发育或疾病建模。尽管有大量关于重编程方法的报道,但全球使用的技术仍然效率低下。我们在这里提出了一种新的优化方法来提高这种效率。在测试了不同的单顺反子载体但效果不佳之后,我们采用了一种多顺反子盒,该盒编码了 Thomson 的鸡尾酒 OCT4、NANOG、SOX2 和 LIN28(ONSL),由 2A 肽隔开。该盒在各种基于慢病毒或逆转录病毒的载体骨架中进行了测试,这些载体骨架基于 LTR 或 EF1 alpha 启动子。这使我们能够证明,ONSL 载体逆转录病毒以比任何其他测试的都高得多的效率(高达 0.6%)重编程成体成纤维细胞。然后,我们比较了两种不同的多顺反子基因 ONSL 和 OCT4、SOX2、KLF4 和 cMYC(OSKM)在相同的 retrovector 骨架中的重编程效率。有趣的是,在这种情况下,ONSL 基因比 OSKM 更有效地重编程,但 OSKM 更快地重编程,这表明两种鸡尾酒可能通过不同的途径进行重编程。通过均匀混合 RV-LTR-ONSL 和 RV-LTR-OSKM,我们确实观察到了显著的协同作用,产生了 >2%的重编程效率。我们在这里提出了重编程效率的大幅提高,这为开发 hiPSC 生产的自动化和高通量策略开辟了道路。此外,非整合重编程方案(即 mRNA)可能会利用这种协同作用来提高其效率。