Chronis Constantinos, Fiziev Petko, Papp Bernadett, Butz Stefan, Bonora Giancarlo, Sabri Shan, Ernst Jason, Plath Kathrin
David Geffen School of Medicine, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Los Angeles, CA 90095, USA.
David Geffen School of Medicine, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Los Angeles, CA 90095, USA.
Cell. 2017 Jan 26;168(3):442-459.e20. doi: 10.1016/j.cell.2016.12.016. Epub 2017 Jan 19.
Oct4, Sox2, Klf4, and cMyc (OSKM) reprogram somatic cells to pluripotency. To gain a mechanistic understanding of their function, we mapped OSKM-binding, stage-specific transcription factors (TFs), and chromatin states in discrete reprogramming stages and performed loss- and gain-of-function experiments. We found that OSK predominantly bind active somatic enhancers early in reprogramming and immediately initiate their inactivation genome-wide by inducing the redistribution of somatic TFs away from somatic enhancers to sites elsewhere engaged by OSK, recruiting Hdac1, and repressing the somatic TF Fra1. Pluripotency enhancer selection is a stepwise process that also begins early in reprogramming through collaborative binding of OSK at sites with high OSK-motif density. Most pluripotency enhancers are selected later in the process and require OS and other pluripotency TFs. Somatic and pluripotency TFs modulate reprogramming efficiency when overexpressed by altering OSK targeting, somatic-enhancer inactivation, and pluripotency enhancer selection. Together, our data indicate that collaborative interactions among OSK and with stage-specific TFs direct both somatic-enhancer inactivation and pluripotency-enhancer selection to drive reprogramming.
八聚体结合转录因子4(Oct4)、性别决定区Y框蛋白2(Sox2)、 Kruppel样因子4(Klf4)和原癌基因c-Myc(OSKM)可将体细胞重编程为多能性细胞。为了从机制上理解它们的功能,我们绘制了在离散重编程阶段的OSKM结合、阶段特异性转录因子(TFs)和染色质状态图谱,并进行了功能丧失和功能获得实验。我们发现,在重编程早期,OSK主要结合活跃的体细胞增强子,并通过诱导体细胞TFs从体细胞增强子重新分布到OSK结合的其他位点、招募组蛋白去乙酰化酶1(Hdac1)以及抑制体细胞TF Fra1,立即在全基因组范围内启动它们的失活。多能性增强子的选择是一个逐步的过程,也在重编程早期通过OSK在具有高OSK基序密度的位点的协同结合开始。大多数多能性增强子在这个过程的后期被选择,并且需要OS和其他多能性TFs。当体细胞TFs和多能性TFs过表达时,它们通过改变OSK靶向、体细胞增强子失活和多能性增强子选择来调节重编程效率。总之,我们的数据表明,OSK之间以及与阶段特异性TFs的协同相互作用指导体细胞增强子失活和多能性增强子选择,从而驱动重编程。