Suppr超能文献

微管在血管内皮屏障功能障碍中的主要作用:外周微管的解体留下了细胞骨架的重组。

The leading role of microtubules in endothelial barrier dysfunction: disassembly of peripheral microtubules leaves behind the cytoskeletal reorganization.

机构信息

Electron Microscopy Department, AN Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.

出版信息

J Cell Biochem. 2013 Oct;114(10):2258-72. doi: 10.1002/jcb.24575.

Abstract

Disturbance of the endothelial barrier is characterized by dramatic cytoskeleton reorganization, activation of actomyosin contraction and, finally, leads to intercellular gap formation. Here we demonstrate that the edemagenic agent, thrombin, causes a rapid increase in the human pulmonary artery endothelial cell (EC) barrier permeability accompanied by fast decreasing in the peripheral microtubules quantity and reorganization of the microtubule system in the internal cytoplasm of the EC within 5 min of the treatment. The actin stress-fibers formation occurs gradually and the maximal effect is observed relatively later, 30 min of the thrombin treatment. Thus, microtubules reaction develops faster than the reorganization of the actin filaments system responsible for the subsequent changes of the cell shape during barrier dysfunction development. Direct microtubules depolymerization by nocodazole initiates the cascade of barrier dysfunction reactions. Nocodazole-induced barrier disruption is connected directly with the degree of peripheral microtubules depolymerization. Short-term loss of endothelial barrier function occurs at the minimal destruction of peripheral microtubules, when actin filament system is still intact. Specifically, we demonstrate that the EC microtubule dynamics examined by time-lapse imaging of EB3-GFP comets movement has changed under these conditions: microtubule plus ends growth rate significantly decreased near the cell periphery. The microtubules, apparently, are the first target in the circuit of reactions leading to the pulmonary EC barrier compromise. Our results show that dynamic microtubules play an essential role in the barrier function in vitro; peripheral microtubules depolymerization is necessary and sufficient condition for initiation of endothelial barrier dysfunction.

摘要

内皮屏障的破坏表现为细胞骨架的剧烈重排、肌动球蛋白收缩的激活,最终导致细胞间间隙的形成。在这里,我们证明,促凝血酶原激酶(凝血酶)这种促水肿剂可导致人肺动脉内皮细胞(EC)屏障通透性迅速增加,同时在治疗的 5 分钟内,外周微管数量迅速减少,EC 内部细胞质中的微管系统发生重排。肌动蛋白应力纤维的形成逐渐发生,最大效应相对较晚,在凝血酶处理 30 分钟时观察到。因此,微管反应比负责细胞形状后续变化的肌动蛋白丝系统的重排更快。长春新碱(nocodazole)直接使微管解聚,引发屏障功能障碍反应级联。长春新碱诱导的屏障破坏与外周微管解聚的程度直接相关。在短暂丧失内皮屏障功能时,外周微管仍完整,仅发生了轻微破坏。具体来说,我们通过 EB3-GFP 彗星运动的延时成像研究表明,在这些条件下,EC 微管动力学发生了变化:细胞边缘附近的微管正极生长速度明显降低。显然,微管是导致肺 EC 屏障受损的反应回路中的第一个靶点。我们的研究结果表明,动态微管在体外屏障功能中发挥着重要作用;外周微管的解聚是引发内皮屏障功能障碍的必要和充分条件。

相似文献

5
Protein kinase A attenuates endothelial cell barrier dysfunction induced by microtubule disassembly.
Am J Physiol Lung Cell Mol Physiol. 2004 Jul;287(1):L86-93. doi: 10.1152/ajplung.00441.2003. Epub 2004 Mar 5.
7
GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction.
Am J Physiol Lung Cell Mol Physiol. 2006 Mar;290(3):L540-8. doi: 10.1152/ajplung.00259.2005. Epub 2005 Oct 28.
8
Pre-B-cell-colony-enhancing factor is critically involved in thrombin-induced lung endothelial cell barrier dysregulation.
Microvasc Res. 2005 Nov;70(3):142-51. doi: 10.1016/j.mvr.2005.08.003. Epub 2005 Sep 26.
9
Microtubule disassembly increases endothelial cell barrier dysfunction: role of MLC phosphorylation.
Am J Physiol Lung Cell Mol Physiol. 2001 Sep;281(3):L565-74. doi: 10.1152/ajplung.2001.281.3.L565.
10
Role of End Binding Protein-1 in endothelial permeability response to barrier-disruptive and barrier-enhancing agonists.
Cell Signal. 2017 Jan;29:1-11. doi: 10.1016/j.cellsig.2016.09.005. Epub 2016 Sep 23.

引用本文的文献

1
Microtubules and mechanosensing: key players in endothelial responses to mechanical stimuli.
Cell Mol Life Sci. 2025 Aug 21;82(1):317. doi: 10.1007/s00018-025-05828-0.
2
Quadrant darkfield for label-free imaging of intracellular puncta.
J Biomed Opt. 2024 Nov;29(11):116501. doi: 10.1117/1.JBO.29.11.116501. Epub 2024 Nov 29.
3
Endothelial Unfolded Protein Response-Mediated Cytoskeletal Effects.
Cell Biochem Funct. 2024 Dec;42(8):e70007. doi: 10.1002/cbf.70007.
4
Quadrant darkfield (QDF) for label-free imaging of intracellular puncta.
bioRxiv. 2024 Aug 7:2024.08.05.606686. doi: 10.1101/2024.08.05.606686.
5
Mechanisms of pulmonary endothelial barrier dysfunction in acute lung injury and acute respiratory distress syndrome.
Chin Med J Pulm Crit Care Med. 2024 Jun;2(2):80-87. doi: 10.1016/j.pccm.2024.04.002. Epub 2024 Jun 12.
8
Selective HDAC6 inhibition protects against blood-brain barrier dysfunction after intracerebral hemorrhage.
CNS Neurosci Ther. 2024 Mar;30(3):e14429. doi: 10.1111/cns.14429. Epub 2023 Sep 4.

本文引用的文献

1
Protein kinase C-α and arginase I mediate pneumolysin-induced pulmonary endothelial hyperpermeability.
Am J Respir Cell Mol Biol. 2012 Oct;47(4):445-53. doi: 10.1165/rcmb.2011-0332OC. Epub 2012 May 10.
2
Microtubules growth rate alteration in human endothelial cells.
J Biomed Biotechnol. 2010;2010:671536. doi: 10.1155/2010/671536. Epub 2010 Apr 26.
3
Microtubule stabilization opposes the (TNF-alpha)-induced loss in the barrier integrity of corneal endothelium.
Exp Eye Res. 2009 Dec;89(6):950-9. doi: 10.1016/j.exer.2009.08.004. Epub 2009 Aug 18.
4
Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration.
Curr Biol. 2009 Jul 14;19(13):1065-74. doi: 10.1016/j.cub.2009.05.065. Epub 2009 Jun 18.
5
Significance of microtubule catastrophes at focal adhesion sites.
Cell Adh Migr. 2009 Jul-Sep;3(3):285-7. doi: 10.4161/cam.3.3.8858. Epub 2009 Jul 27.
6
Microtubule plus-end binding protein EB1 is necessary for muscle cell differentiation, elongation and fusion.
J Cell Sci. 2009 May 1;122(Pt 9):1401-9. doi: 10.1242/jcs.039255. Epub 2009 Apr 14.
7
Antivascular actions of microtubule-binding drugs.
Clin Cancer Res. 2009 Apr 15;15(8):2594-601. doi: 10.1158/1078-0432.CCR-08-2710. Epub 2009 Apr 7.
8
Microtubule disassembly breaks down the barrier integrity of corneal endothelium.
Exp Eye Res. 2009 Sep;89(3):333-43. doi: 10.1016/j.exer.2009.03.019. Epub 2009 Apr 2.
9
Touch, grasp, deliver and control: functional cross-talk between microtubules and cell adhesions.
Traffic. 2009 Mar;10(3):268-74. doi: 10.1111/j.1600-0854.2008.00869.x. Epub 2009 Jan 17.
10
The formin mDia2 stabilizes microtubules independently of its actin nucleation activity.
J Cell Biol. 2008 May 5;181(3):523-36. doi: 10.1083/jcb.200709029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验