文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从黄石国家公园黑曜石池的纳米古菌及其推测的腔肠古菌宿主的基因组中洞察古菌的进化和共生关系。

Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park.

机构信息

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.

出版信息

Biol Direct. 2013 Apr 22;8:9. doi: 10.1186/1745-6150-8-9.


DOI:10.1186/1745-6150-8-9
PMID:23607440
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3655853/
Abstract

BACKGROUND: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes. RESULTS: The first terrestrial hyperthermophilic member of the Nanoarchaeota was collected from Obsidian Pool, a thermal feature in Yellowstone National Park, separated by single cell isolation, and sequenced together with its putative host, a Sulfolobales archaeon. Both the new Nanoarchaeota (Nst1) and N. equitans lack most biosynthetic capabilities, and phylogenetic analysis of ribosomal RNA and protein sequences indicates that the two form a deep-branching archaeal lineage. However, the Nst1 genome is more than 20% larger, and encodes a complete gluconeogenesis pathway as well as the full complement of archaeal flagellum proteins. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. These findings imply that, rather than representing ancestral characters, the extremely compact genomes and multiple split genes of Nanoarchaeota are derived characters associated with their symbiotic or parasitic lifestyle. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. CONCLUSIONS: Comparison of the N. equitans and Nst1 genomes suggests that the marine and terrestrial lineages of Nanoarchaeota share a common ancestor that was already a symbiont of another archaeon. The two distinct Nanoarchaeota-host genomic data sets offer novel insights into the evolution of archaeal symbiosis and parasitism, enabling further studies of the cellular and molecular mechanisms of these relationships. REVIEWERS: This article was reviewed by Patrick Forterre, Bettina Siebers (nominated by Michael Galperin) and Purification Lopez-Garcia.

摘要

背景:单一培养的海洋生物纳古菌代表共生古菌的纳米古菌分支,具有高度简化的基因组和多个分裂基因等不寻常特征。

结果:从黄石国家公园热特征 Obsidian Pool 中分离到的第一个陆地嗜热纳米古菌成员,通过单细胞分离进行分离,并与假定的宿主 Sulfolobales 古菌一起测序。新的纳米古菌(Nst1)和 N. equitans 都缺乏大多数生物合成能力,核糖体 RNA 和蛋白质序列的系统发育分析表明,两者形成了一个深分支古菌谱系。然而,Nst1 基因组超过 20%,并且编码完整的糖异生途径以及完整的古菌鞭毛蛋白。由于基因组较大,编码分裂蛋白的基因种类较少,并且没有分裂的非连续 tRNA,Nst1 似乎经历了比 N. equitans 更少的基因组减少。这些发现表明,纳米古菌极其紧凑的基因组和多个分裂基因不是原始特征,而是与其共生或寄生生活方式相关的衍生特征。与其他 Sulfolobales 相比,Nst1 的推断宿主可能是自养的,其基因组简化,中心和能量代谢简化。

结论:N. equitans 和 Nst1 基因组的比较表明,海洋和陆地纳米古菌谱系共享一个已经是另一个古菌共生体的共同祖先。这两个不同的纳米古菌-宿主基因组数据集为古菌共生和寄生的进化提供了新的见解,使我们能够进一步研究这些关系的细胞和分子机制。

评论者:本文由 Patrick Forterre、Bettina Siebers(由 Michael Galperin 提名)和 Purification Lopez-Garcia 进行了评审。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/9d584cea1dbe/1745-6150-8-9-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/868b325c5fe8/1745-6150-8-9-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/518db8691101/1745-6150-8-9-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/f8061cd65f37/1745-6150-8-9-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/9a680ef86f6f/1745-6150-8-9-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/877dbe4721b3/1745-6150-8-9-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/c3eade0524af/1745-6150-8-9-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/9d584cea1dbe/1745-6150-8-9-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/868b325c5fe8/1745-6150-8-9-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/518db8691101/1745-6150-8-9-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/f8061cd65f37/1745-6150-8-9-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/9a680ef86f6f/1745-6150-8-9-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/877dbe4721b3/1745-6150-8-9-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/c3eade0524af/1745-6150-8-9-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14e/3655853/9d584cea1dbe/1745-6150-8-9-7.jpg

相似文献

[1]
Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park.

Biol Direct. 2013-4-22

[2]
The split genes of Nanoarchaeum equitans have not originated in its lineage and have been merged in another Nanoarchaeota: a reply to Podar et al.

J Theor Biol. 2014-5-21

[3]
Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs.

Appl Environ Microbiol. 2015-11

[4]
Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment.

Nat Commun. 2016-7-5

[5]
Single-cell genomics of co-sorted Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis.

Microbiome. 2018-9-17

[6]
The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism.

Proc Natl Acad Sci U S A. 2003-10-28

[7]
Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation.

BMC Genomics. 2006-7-25

[8]
A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans.

Genome Biol. 2008

[9]
Happy together: genomic insights into the unique Nanoarchaeum/Ignicoccus association.

J Biol. 2009

[10]
An archaeal symbiont-host association from the deep terrestrial subsurface.

ISME J. 2019-5-2

引用本文的文献

[1]
Phylogenomic Analyses Reveal that Panguiarchaeum Is a Clade of Genome-Reduced Asgard Archaea Within the Njordarchaeia.

Mol Biol Evol. 2025-9-1

[2]
Phylogenomic analyses indicate the archaeal superphylum DPANN originated from free-living euryarchaeal-like ancestors.

Nat Microbiol. 2025-6-17

[3]
The discovery of Nanopusillus phoceensis sheds light on the diversity of the microbiota nanoarchaea.

iScience. 2024-3-11

[4]
Computational analysis of genes with lethal knockout phenotype and prediction of essential genes in archaea.

mBio. 2024-2-14

[5]
Challenges and Approaches of Culturing the Unculturable Archaea.

Biology (Basel). 2023-12-7

[6]
A comprehensive history of motility and Archaellation in Archaea.

FEMS Microbes. 2021-4-8

[7]
Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere.

Genome Biol Evol. 2022-5-31

[8]
Metagenomics survey unravels diversity of biogas microbiomes with potential to enhance productivity in Kenya.

PLoS One. 2021

[9]
Functional Prediction and Assignment of M1 Operome Using a Combined Bioinformatics Approach.

Front Genet. 2020-12-16

[10]
Ancestral Absence of Electron Transport Chains in Patescibacteria and DPANN.

Front Microbiol. 2020-8-17

本文引用的文献

[1]
Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer.

Biol Direct. 2012-12-14

[2]
Modeling the Thermoproteaceae RNase P RNA.

RNA Biol. 2012-9-1

[3]
Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus.

PLoS One. 2012-8-31

[4]
Genomic sequencing of uncultured microorganisms from single cells.

Nat Rev Microbiol. 2012-9

[5]
Scaling metagenome sequence assembly with probabilistic de Bruijn graphs.

Proc Natl Acad Sci U S A. 2012-7-30

[6]
RNA processing in the minimal organism Nanoarchaeum equitans.

Genome Biol. 2012-7-18

[7]
Phylogenomics of prokaryotic ribosomal proteins.

PLoS One. 2012-5-16

[8]
The archaellum: an old motility structure with a new name.

Trends Microbiol. 2012-5-19

[9]
Inter-field variability in the microbial communities of hydrothermal vent deposits from a back-arc basin.

Geobiology. 2012-3-23

[10]
The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes.

Biol Direct. 2012-2-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索