Suppr超能文献

闭环解码器自适应算法在脑机接口中的设计与分析。

Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces.

机构信息

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Neural Comput. 2013 Jul;25(7):1693-731. doi: 10.1162/NECO_a_00460. Epub 2013 Apr 22.

Abstract

Closed-loop decoder adaptation (CLDA) is an emerging paradigm for achieving rapid performance improvements in online brain-machine interface (BMI) operation. Designing an effective CLDA algorithm requires making multiple important decisions, including choosing the timescale of adaptation, selecting which decoder parameters to adapt, crafting the corresponding update rules, and designing CLDA parameters. These design choices, combined with the specific settings of CLDA parameters, will directly affect the algorithm's ability to make decoder parameters converge to values that optimize performance. In this article, we present a general framework for the design and analysis of CLDA algorithms and support our results with experimental data of two monkeys performing a BMI task. First, we analyze and compare existing CLDA algorithms to highlight the importance of four critical design elements: the adaptation timescale, selective parameter adaptation, smooth decoder updates, and intuitive CLDA parameters. Second, we introduce mathematical convergence analysis using measures such as mean-squared error and KL divergence as a useful paradigm for evaluating the convergence properties of a prototype CLDA algorithm before experimental testing. By applying these measures to an existing CLDA algorithm, we demonstrate that our convergence analysis is an effective analytical tool that can ultimately inform and improve the design of CLDA algorithms.

摘要

闭环解码器自适应(CLDA)是一种新兴的范式,可实现在线脑机接口(BMI)操作中的快速性能提升。设计有效的 CLDA 算法需要做出多个重要决策,包括选择自适应的时间尺度、选择要自适应的解码器参数、设计相应的更新规则以及设计 CLDA 参数。这些设计选择以及 CLDA 参数的特定设置将直接影响算法使解码器参数收敛到优化性能的值的能力。在本文中,我们提出了一种用于设计和分析 CLDA 算法的通用框架,并通过两只猴子执行 BMI 任务的实验数据支持我们的结果。首先,我们分析和比较现有的 CLDA 算法,以突出四个关键设计元素的重要性:自适应时间尺度、选择性参数自适应、平滑解码器更新和直观的 CLDA 参数。其次,我们使用均方误差和 KL 散度等度量标准引入数学收敛分析,作为在实验测试之前评估原型 CLDA 算法的收敛特性的有用范例。通过将这些措施应用于现有的 CLDA 算法,我们证明我们的收敛分析是一种有效的分析工具,最终可以为 CLDA 算法的设计提供信息并加以改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验