Shanechi Maryam M, Orsborn Amy, Moorman Helene, Gowda Suraj, Carmena Jose M
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6493-6. doi: 10.1109/EMBC.2014.6945115.
Brain-machine interface (BMI) performance has been improved using Kalman filters (KF) combined with closed-loop decoder adaptation (CLDA). CLDA fits the decoder parameters during closed-loop BMI operation based on the neural activity and inferred user velocity intention. These advances have resulted in the recent ReFIT-KF and SmoothBatch-KF decoders. Here we demonstrate high-performance and robust BMI control using a novel closed-loop BMI architecture termed adaptive optimal feedback-controlled (OFC) point process filter (PPF). Adaptive OFC-PPF allows subjects to issue neural commands and receive feedback with every spike event and hence at a faster rate than the KF. Moreover, it adapts the decoder parameters with every spike event in contrast to current CLDA techniques that do so on the time-scale of minutes. Finally, unlike current methods that rotate the decoded velocity vector, adaptive OFC-PPF constructs an infinite-horizon OFC model of the brain to infer velocity intention during adaptation. Preliminary data collected in a monkey suggests that adaptive OFC-PPF improves BMI control. OFC-PPF outperformed SmoothBatch-KF in a self-paced center-out movement task with 8 targets. This improvement was due to both the PPF's increased rate of control and feedback compared with the KF, and to the OFC model suggesting that the OFC better approximates the user's strategy. Also, the spike-by-spike adaptation resulted in faster performance convergence compared to current techniques. Thus adaptive OFC-PPF enabled proficient BMI control in this monkey.
通过将卡尔曼滤波器(KF)与闭环解码器自适应(CLDA)相结合,脑机接口(BMI)的性能得到了提升。CLDA在闭环BMI操作过程中,根据神经活动和推断出的用户速度意图来拟合解码器参数。这些进展催生了最近的ReFIT-KF和平滑批次-KF解码器。在此,我们展示了一种新型闭环BMI架构——自适应最优反馈控制(OFC)点过程滤波器(PPF),它能实现高性能且稳健的BMI控制。自适应OFC-PPF允许受试者在每个尖峰事件时发出神经指令并接收反馈,因此其反馈速度比KF更快。此外,与当前在分钟时间尺度上进行参数调整的CLDA技术不同,它在每个尖峰事件时都会调整解码器参数。最后,与当前旋转解码速度向量的方法不同,自适应OFC-PPF构建了一个无限时域的大脑OFC模型,以便在自适应过程中推断速度意图。在一只猴子身上收集的初步数据表明,自适应OFC-PPF改善了BMI控制。在一个有8个目标的自定节奏中心外运动任务中,OFC-PPF的表现优于平滑批次-KF。这种提升既得益于PPF相较于KF更高的控制和反馈速率,也得益于OFC模型,这表明OFC能更好地逼近用户策略。此外,与当前技术相比,逐尖峰自适应使得性能收敛更快。因此,自适应OFC-PPF在这只猴子身上实现了高效的BMI控制。