Suppr超能文献

在中间时间尺度上进行闭环解码器自适应有助于快速改善 BMI 性能,而与解码器初始化条件无关。

Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions.

机构信息

Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA 94720, USA.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2012 Jul;20(4):468-77. doi: 10.1109/TNSRE.2012.2185066.

Abstract

Closed-loop decoder adaptation (CLDA) shows great promise to improve closed-loop brain-machine interface (BMI) performance. Developing adaptation algorithms capable of rapidly improving performance, independent of initial performance, may be crucial for clinical applications where patients have limited movement and sensory abilities due to motor deficits. Given the subject-decoder interactions inherent in closed-loop BMIs, the decoder adaptation time-scale may be of particular importance when initial performance is limited. Here, we present SmoothBatch, a CLDA algorithm which updates decoder parameters on a 1-2 min time-scale using an exponentially weighted sliding average. The algorithm was experimentally tested with one nonhuman primate performing a center-out reaching BMI task. SmoothBatch was seeded four ways with varying offline decoding power: 1) visual observation of a cursor ( n = 20), 2) ipsilateral arm movements ( n = 8), 3) baseline neural activity ( n = 17), and 4) arbitrary weights ( n = 11). SmoothBatch rapidly improved performance regardless of seeding, with performance improvements from 0.018 ±0.133 successes/min to > 8 successes/min within 13.1 ±5.5 min ( n = 56). After decoder adaptation ceased, the subject maintained high performance. Moreover, performance improvements were paralleled by SmoothBatch convergence, suggesting that CLDA involves a co-adaptation process between the subject and the decoder.

摘要

闭环解码器自适应 (CLDA) 显示出极大的潜力,可以提高闭环脑机接口 (BMI) 的性能。开发能够快速提高性能的自适应算法,而不依赖于初始性能,对于那些由于运动缺陷而导致运动和感知能力有限的患者的临床应用可能至关重要。考虑到闭环 BMI 中固有的主体-解码器交互,当初始性能有限时,解码器自适应的时间尺度可能尤为重要。在这里,我们提出了 SmoothBatch,这是一种 CLDA 算法,它使用指数加权滑动平均值在 1-2 分钟的时间尺度上更新解码器参数。该算法通过一只非人类灵长类动物执行中心向外的指向 BMI 任务进行了实验测试。SmoothBatch 以四种不同的方式进行了种子设置,具有不同的离线解码能力:1)光标视觉观察 ( n = 20 ),2)同侧手臂运动 ( n = 8 ),3)基线神经活动 ( n = 17 )和 4)任意权重 ( n = 11 )。无论种子如何,SmoothBatch 都能迅速提高性能,从 0.018 ±0.133 次/分钟到 13.1 ±5.5 分钟内 > 8 次/分钟( n = 56 )的性能提升。在解码器自适应停止后,受试者保持了较高的性能。此外,性能的提高与 SmoothBatch 的收敛平行,这表明 CLDA 涉及主体和解码器之间的共同自适应过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验