Department of Neurobiology, Yale University, New Haven, CT 06520, USA.
Neural Comput. 2013 Jul;25(7):1732-67. doi: 10.1162/NECO_a_00451. Epub 2013 Apr 22.
The activity of neurons is correlated, and this correlation affects how the brain processes information. We study the neural circuit mechanisms of correlations by analyzing a network model characterized by strong and heterogeneous interactions: excitatory input drives the fluctuations of neural activity, which are counterbalanced by inhibitory feedback. In particular, excitatory input tends to correlate neurons, while inhibitory feedback reduces correlations. We demonstrate that heterogeneity of synaptic connections is necessary for this inhibition of correlations. We calculate statistical averages over the disordered synaptic interactions and apply our findings to both a simple linear model and a more realistic spiking network model. We find that correlations at zero time lag are positive and of magnitude K(-1/2) where K is the number of connections to a neuron. Correlations at longer timescales are of smaller magnitude, of order K(-1), implying that inhibition of correlations occurs quickly, on a timescale of K(-1/2). The small magnitude of correlations agrees qualitatively with physiological measurements in the cerebral cortex and basal ganglia. The model could be used to study correlations in brain regions dominated by recurrent inhibition, such as the striatum and globus pallidus.
神经元的活动是相关的,这种相关性影响大脑处理信息的方式。我们通过分析一个以强异质相互作用为特征的网络模型来研究相关的神经回路机制:兴奋性输入驱动神经元活动的波动,而抑制性反馈则平衡这种波动。具体来说,兴奋性输入往往会使神经元相关,而抑制性反馈则会降低相关性。我们证明了突触连接的异质性对于这种相关性的抑制是必要的。我们对无序的突触相互作用进行统计平均,并将我们的发现应用于一个简单的线性模型和一个更现实的尖峰网络模型。我们发现,零时间滞后的相关性是正的,大小为 K(-1/2),其中 K 是一个神经元的连接数。较长时间尺度的相关性要小得多,量级为 K(-1),这意味着相关性的抑制很快发生,时间尺度为 K(-1/2)。相关性的小幅度与大脑皮层和基底神经节的生理测量结果定性一致。该模型可用于研究以递归抑制为主的脑区的相关性,如纹状体和苍白球。