Suppr超能文献

在异质神经回路中通过重复抑制去相关。

Decorrelation by recurrent inhibition in heterogeneous neural circuits.

机构信息

Department of Neurobiology, Yale University, New Haven, CT 06520, USA.

出版信息

Neural Comput. 2013 Jul;25(7):1732-67. doi: 10.1162/NECO_a_00451. Epub 2013 Apr 22.

Abstract

The activity of neurons is correlated, and this correlation affects how the brain processes information. We study the neural circuit mechanisms of correlations by analyzing a network model characterized by strong and heterogeneous interactions: excitatory input drives the fluctuations of neural activity, which are counterbalanced by inhibitory feedback. In particular, excitatory input tends to correlate neurons, while inhibitory feedback reduces correlations. We demonstrate that heterogeneity of synaptic connections is necessary for this inhibition of correlations. We calculate statistical averages over the disordered synaptic interactions and apply our findings to both a simple linear model and a more realistic spiking network model. We find that correlations at zero time lag are positive and of magnitude K(-1/2) where K is the number of connections to a neuron. Correlations at longer timescales are of smaller magnitude, of order K(-1), implying that inhibition of correlations occurs quickly, on a timescale of K(-1/2). The small magnitude of correlations agrees qualitatively with physiological measurements in the cerebral cortex and basal ganglia. The model could be used to study correlations in brain regions dominated by recurrent inhibition, such as the striatum and globus pallidus.

摘要

神经元的活动是相关的,这种相关性影响大脑处理信息的方式。我们通过分析一个以强异质相互作用为特征的网络模型来研究相关的神经回路机制:兴奋性输入驱动神经元活动的波动,而抑制性反馈则平衡这种波动。具体来说,兴奋性输入往往会使神经元相关,而抑制性反馈则会降低相关性。我们证明了突触连接的异质性对于这种相关性的抑制是必要的。我们对无序的突触相互作用进行统计平均,并将我们的发现应用于一个简单的线性模型和一个更现实的尖峰网络模型。我们发现,零时间滞后的相关性是正的,大小为 K(-1/2),其中 K 是一个神经元的连接数。较长时间尺度的相关性要小得多,量级为 K(-1),这意味着相关性的抑制很快发生,时间尺度为 K(-1/2)。相关性的小幅度与大脑皮层和基底神经节的生理测量结果定性一致。该模型可用于研究以递归抑制为主的脑区的相关性,如纹状体和苍白球。

相似文献

1
Decorrelation by recurrent inhibition in heterogeneous neural circuits.
Neural Comput. 2013 Jul;25(7):1732-67. doi: 10.1162/NECO_a_00451. Epub 2013 Apr 22.
2
Decorrelation of neural-network activity by inhibitory feedback.
PLoS Comput Biol. 2012 Aug;8(8):e1002596. doi: 10.1371/journal.pcbi.1002596. Epub 2012 Aug 2.
3
Recurrent interactions in spiking networks with arbitrary topology.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 1):031916. doi: 10.1103/PhysRevE.85.031916. Epub 2012 Mar 29.
4
Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1.
J Neurosci. 2013 Mar 27;33(13):5475-85. doi: 10.1523/JNEUROSCI.4188-12.2013.
5
How local excitation-inhibition ratio impacts the whole brain dynamics.
J Neurosci. 2014 Jun 4;34(23):7886-98. doi: 10.1523/JNEUROSCI.5068-13.2014.
6
Mixed signal learning by spike correlation propagation in feedback inhibitory circuits.
PLoS Comput Biol. 2015 Apr 24;11(4):e1004227. doi: 10.1371/journal.pcbi.1004227. eCollection 2015 Apr.
7
Synaptic input correlations leading to membrane potential decorrelation of spontaneous activity in cortex.
J Neurosci. 2013 Sep 18;33(38):15075-85. doi: 10.1523/JNEUROSCI.0347-13.2013.
8
Stimulus-dependent suppression of chaos in recurrent neural networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):011903. doi: 10.1103/PhysRevE.82.011903. Epub 2010 Jul 7.
9
Asynchronous Rate Chaos in Spiking Neuronal Circuits.
PLoS Comput Biol. 2015 Jul 31;11(7):e1004266. doi: 10.1371/journal.pcbi.1004266. eCollection 2015 Jul.
10
Two forms of feedback inhibition determine the dynamical state of a small hippocampal network.
Neural Netw. 2009 Oct;22(8):1139-58. doi: 10.1016/j.neunet.2009.07.015. Epub 2009 Jul 18.

引用本文的文献

1
Cellular and subcellular specialization enables biology-constrained deep learning.
bioRxiv. 2025 May 27:2025.05.22.655599. doi: 10.1101/2025.05.22.655599.
2
3
Shared input and recurrency in neural networks for metabolically efficient information transmission.
PLoS Comput Biol. 2024 Feb 23;20(2):e1011896. doi: 10.1371/journal.pcbi.1011896. eCollection 2024 Feb.
4
Intrinsic neural diversity quenches the dynamic volatility of neural networks.
Proc Natl Acad Sci U S A. 2023 Jul 11;120(28):e2218841120. doi: 10.1073/pnas.2218841120. Epub 2023 Jul 3.
5
Local Homeostatic Regulation of the Spectral Radius of Echo-State Networks.
Front Comput Neurosci. 2021 Feb 24;15:587721. doi: 10.3389/fncom.2021.587721. eCollection 2021.
6
Adaptation modulates correlated subthreshold response variability in visual cortex.
J Neurophysiol. 2017 Aug 1;118(2):1257-1269. doi: 10.1152/jn.00124.2017. Epub 2017 Jun 7.
7
Estimating Fast Neural Input Using Anatomical and Functional Connectivity.
Front Neural Circuits. 2016 Dec 20;10:99. doi: 10.3389/fncir.2016.00099. eCollection 2016.
8
Columnar architecture improves noise robustness in a model cortical network.
PLoS One. 2015 Mar 17;10(3):e0119072. doi: 10.1371/journal.pone.0119072. eCollection 2015.

本文引用的文献

1
Decorrelation of neural-network activity by inhibitory feedback.
PLoS Comput Biol. 2012 Aug;8(8):e1002596. doi: 10.1371/journal.pcbi.1002596. Epub 2012 Aug 2.
2
Impact of network structure and cellular response on spike time correlations.
PLoS Comput Biol. 2012;8(3):e1002408. doi: 10.1371/journal.pcbi.1002408. Epub 2012 Mar 22.
3
Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation.
Front Syst Neurosci. 2011 Jun 21;5:50. doi: 10.3389/fnsys.2011.00050. eCollection 2011.
4
Measuring and interpreting neuronal correlations.
Nat Neurosci. 2011 Jun 27;14(7):811-9. doi: 10.1038/nn.2842.
5
How structure determines correlations in neuronal networks.
PLoS Comput Biol. 2011 May;7(5):e1002059. doi: 10.1371/journal.pcbi.1002059. Epub 2011 May 19.
6
A reservoir of time constants for memory traces in cortical neurons.
Nat Neurosci. 2011 Mar;14(3):366-72. doi: 10.1038/nn.2752. Epub 2011 Feb 13.
7
Decoding the activity of neuronal populations in macaque primary visual cortex.
Nat Neurosci. 2011 Feb;14(2):239-45. doi: 10.1038/nn.2733. Epub 2011 Jan 9.
8
Noise correlations improve response fidelity and stimulus encoding.
Nature. 2010 Dec 16;468(7326):964-7. doi: 10.1038/nature09570. Epub 2010 Dec 5.
9
Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice.
Nature. 2010 Apr 22;464(7292):1182-6. doi: 10.1038/nature08897. Epub 2010 Apr 7.
10
The asynchronous state in cortical circuits.
Science. 2010 Jan 29;327(5965):587-90. doi: 10.1126/science.1179850.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验