Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Research Center Jülich, Jülich, Germany.
PLoS Comput Biol. 2012 Aug;8(8):e1002596. doi: 10.1371/journal.pcbi.1002596. Epub 2012 Aug 2.
Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between excitatory (E) and inhibitory (I) neurons, but a consequence of a particular structure of correlations among the three possible pairings (EE, EI, II).
神经元集合中的尖峰相关会严重损害其时空结构的信息编码。在有限的神经网络中,相关性的一个不可避免的来源是神经元对之间共同的突触前输入。最近的研究表明,在递归神经网络中的尖峰相关比基于共享突触前输入的数量所预期的要小得多。在这里,我们通过线性网络模型和漏电积分和放电神经元网络的模拟来解释这一观察结果。我们表明,抑制性反馈有效地抑制了成对相关,因此,群体率波动,从而赋予抑制性神经元新的主动去相关作用。我们通过比较完整的递归网络(反馈系统)和反馈通道统计数据受到干扰的系统(前馈系统)的响应来量化这种去相关。反馈统计数据的操纵可以导致群体响应的功率和相干性显著增加。特别是,忽略反馈通道集合内的相关性或外部刺激与反馈之间的相关性会使群体率波动增加几个数量级。在同质抑制性网络中,波动抑制是由于复合活动的一维动力学中的负反馈环引起的。同样,坐标变换会暴露出稳定的兴奋性抑制性网络的复合动力学中的有效负反馈环。有限网络中输入相关性的抑制是通过线性网络模型中的群体平均相关性来解释的:在纯抑制性网络中,共享输入相关性被负尖峰相关所抵消。在兴奋性抑制性网络中,尖峰相关通常是正的。在这里,输入相关性的抑制不是兴奋性(E)和抑制性(I)神经元之间存在相关性的结果,而是三个可能配对(EE、EI、II)之间相关性的特定结构的结果。