Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA, USA.
Med Eng Phys. 2013 Sep;35(9):1358-67. doi: 10.1016/j.medengphy.2013.03.005. Epub 2013 Apr 20.
The objective of this work is to develop a robust method for human abdominal aortic aneurysm (AAA) centerline detection that can contribute to the accurate computation of features for the prediction of AAA rupture risk. A semiautomatic algorithm is proposed for detecting the lumen centerline in contrast-enhanced abdominal computed tomography images based on online adaboost classifiers, which does not require prior image segmentation. The algorithm was developed and applied to thirty ruptured and thirty unruptured AAA image data sets and the tortuosities of the detected centerline were measured to assess the correlation between AAA tortuosity and the binary ruptured and unruptured labels. The lumen of each data set was segmented manually by a trained radiologist and the resulting centerlines of each data set were defined as the gold standard to evaluate the accuracy of the algorithm and to compare it against two widely used segmentation techniques. The average mean relative accuracy of the offline adaboost classifier is 91.9% with a standard deviation of 1.6%; for the online adaboost classifier it is 93.6% with a standard deviation of 1.9% (p<0.05). The online adaboost classifier outperforms the offline adaboost classifier while their computational costs are similar. Aneurysm tortuosity computed from an accurately derived lumen centerline using online adaboost is statistically higher for ruptured aneurysms compared to unruptured aneurysms, indicating that tortuosity can be used to assess rupture risk in the vascular clinic.
本研究旨在开发一种稳健的人体腹主动脉瘤(AAA)中心线检测方法,以准确计算 AAA 破裂风险预测特征。我们提出了一种基于在线 Adaboost 分类器的半自动化算法,用于检测对比增强腹部 CT 图像中的管腔中心线,该算法无需事先进行图像分割。该算法是为三十个破裂和三十个未破裂的 AAA 图像数据集开发和应用的,并测量了检测到的中心线的扭曲度,以评估 AAA 扭曲度与破裂和未破裂的二进制标签之间的相关性。每个数据集的管腔均由经过培训的放射科医生手动分割,并且每个数据集的中心线都被定义为黄金标准,以评估算法的准确性并将其与两种广泛使用的分割技术进行比较。离线 Adaboost 分类器的平均平均相对准确性为 91.9%,标准偏差为 1.6%;在线 Adaboost 分类器的平均平均相对准确性为 93.6%,标准偏差为 1.9%(p<0.05)。在线 Adaboost 分类器的性能优于离线 Adaboost 分类器,而它们的计算成本相似。使用在线 Adaboost 从准确推导的管腔中心线计算出的动脉瘤扭曲度对于破裂的动脉瘤与未破裂的动脉瘤相比统计学上更高,表明扭曲度可用于评估血管临床中的破裂风险。