Institut de Química Computacional and Departament de Química, Universitat de Girona, Girona 17071, Spain.
J Comput Chem. 2013 Jul 5;34(18):1540-8. doi: 10.1002/jcc.23287. Epub 2013 Apr 23.
Iron-sulfur proteins involved in electron transfer reactions have finely tuned redox potentials, which allow them to be highly efficient and specific. Factors such as metal center solvent exposure, interaction with charged residues, or hydrogen bonds between the ligand residues and amide backbone groups have all been pointed out to cause such specific redox potentials. Here, we derived parameters compatible with the AMBER force field for the metal centers of iron-sulfur proteins and applied them in the molecular dynamics simulations of three iron-sulfur proteins. We used density-functional theory (DFT) calculations and Seminario's method for the parameterization. Parameter validation was obtained by matching structures and normal frequencies at the quantum mechanics and molecular mechanics levels of theory. Having guaranteed a correct representation of the protein coordination spheres, the amide H-bonds and the water exposure to the ligands were analyzed. Our results for the pattern of interactions with the metal centers are consistent to those obtained by nuclear magnetic resonance spectroscopy (NMR) experiments and DFT calculations, allowing the application of molecular dynamics to the study of those proteins.
参与电子转移反应的铁硫蛋白具有精细调节的氧化还原电位,这使它们具有高效和特异性。金属中心溶剂暴露、与带电残基相互作用或配体残基与酰胺骨架之间的氢键等因素都被指出会导致这种特定的氧化还原电位。在这里,我们为铁硫蛋白的金属中心导出了与 AMBER 力场兼容的参数,并将其应用于三种铁硫蛋白的分子动力学模拟中。我们使用密度泛函理论(DFT)计算和 Seminario 方法进行参数化。通过在量子力学和分子力学理论水平上匹配结构和正常频率来获得参数验证。在保证正确表示蛋白质配位球、酰胺氢键和配体对水的暴露的情况下,分析了与金属中心的相互作用模式。我们与核磁共振波谱(NMR)实验和 DFT 计算结果一致,这使得分子动力学能够应用于这些蛋白质的研究。