Suppr超能文献

Catalytic phenol hydroxylation with dioxygen: extension of the tyrosinase mechanism beyond the protein matrix.

作者信息

Hoffmann Alexander, Citek Cooper, Binder Stephan, Goos Arne, Rübhausen Michael, Troeppner Oliver, Ivanović-Burmazović Ivana, Wasinger Erik C, Stack T Daniel P, Herres-Pawlis Sonja

机构信息

Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.

出版信息

Angew Chem Int Ed Engl. 2013 May 10;52(20):5398-401. doi: 10.1002/anie.201301249. Epub 2013 Apr 22.

Abstract
摘要

相似文献

1
Catalytic phenol hydroxylation with dioxygen: extension of the tyrosinase mechanism beyond the protein matrix.
Angew Chem Int Ed Engl. 2013 May 10;52(20):5398-401. doi: 10.1002/anie.201301249. Epub 2013 Apr 22.
2
Chemistry. Dioxygen surprises.
Science. 2005 Jun 24;308(5730):1876-7. doi: 10.1126/science.1113708.
3
Mechanistic aspects of the tyrosinase oxidation of hydroquinone.
Bioorg Med Chem Lett. 2014 Jun 1;24(11):2463-4. doi: 10.1016/j.bmcl.2014.04.009. Epub 2014 Apr 13.
4
Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism.
Science. 2005 Jun 24;308(5730):1890-2. doi: 10.1126/science.1112081.
5
The mechanism of suicide-inactivation of tyrosinase: a substrate structure investigation.
Tohoku J Exp Med. 2007 Aug;212(4):341-8. doi: 10.1620/tjem.212.341.
6
Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.
Bioorg Med Chem. 2014 Apr 15;22(8):2388-95. doi: 10.1016/j.bmc.2014.02.048. Epub 2014 Mar 4.
8
Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation.
Chem Biol Interact. 1997 Apr 18;104(1):11-27. doi: 10.1016/s0009-2797(97)03763-0.
9
Kinetic evaluation of phenolase activity of tyrosinase using simplified catalytic reaction system.
J Am Chem Soc. 2003 Oct 29;125(43):13034-5. doi: 10.1021/ja036425d.
10
Kinetic cooperativity of tyrosinase. A general mechanism.
Acta Biochim Pol. 2011;58(3):303-11. Epub 2011 Aug 29.

引用本文的文献

1
Coupled Binuclear Copper Sites in Biology: An Experimentally-Calibrated Computational Perspective.
Coord Chem Rev. 2025 Feb 15;525. doi: 10.1016/j.ccr.2024.216301. Epub 2024 Nov 23.
2
Dioxygenase Chemistry in Nucleophilic Aldehyde Deformylations Utilizing Dicopper O-Derived Peroxide Complexes.
J Am Chem Soc. 2024 Aug 28;146(34):23854-23871. doi: 10.1021/jacs.4c06243. Epub 2024 Aug 14.
3
Experimental Evidence and Mechanistic Description of the Phenolic H-Transfer to the CuO Active Site of oxy-Tyrosinase.
J Am Chem Soc. 2023 Oct 25;145(42):22866-22870. doi: 10.1021/jacs.3c07450. Epub 2023 Oct 16.
4
Electrooxidation of Phenol on Polyelectrolyte Modified Carbon Electrodes for Use in Insulin Pump Infusion Sets.
J Diabetes Sci Technol. 2024 May;18(3):625-634. doi: 10.1177/19322968221123083. Epub 2022 Sep 13.
5
Copper-Catalyzed Monooxygenation of Phenols: Evidence for a Mononuclear Reaction Mechanism.
Angew Chem Int Ed Engl. 2022 Jun 20;61(25):e202202562. doi: 10.1002/anie.202202562. Epub 2022 Apr 28.
6
X-ray-Based Techniques to Study the Nano-Bio Interface.
ACS Nano. 2021 Mar 23;15(3):3754-3807. doi: 10.1021/acsnano.0c09563. Epub 2021 Mar 2.
7
Room temperature stable multitalent: highly reactive and versatile copper guanidine complexes in oxygenation reactions.
J Biol Inorg Chem. 2021 May;26(2-3):249-263. doi: 10.1007/s00775-021-01849-9. Epub 2021 Feb 17.
8
Exceptional Substrate Diversity in Oxygenation Reactions Catalyzed by a Bis(μ-oxo) Copper Complex.
Chemistry. 2020 Jun 18;26(34):7556-7562. doi: 10.1002/chem.202000664. Epub 2020 May 19.
9
Polymer-Coated Mesoporous Carbon as Enzyme Platform for Oxidation of Bisphenol A in Organic Solvents.
ACS Omega. 2019 Sep 27;4(15):16409-16417. doi: 10.1021/acsomega.9b01945. eCollection 2019 Oct 8.
10
Dearomatization of Electron-Deficient Phenols to ortho-Quinones: Bidentate Nitrogen-Ligated Iodine(V) Reagents.
Angew Chem Int Ed Engl. 2019 Nov 4;58(45):16181-16187. doi: 10.1002/anie.201909868. Epub 2019 Sep 20.

本文引用的文献

1
Hydroxylation of p-substituted phenols by tyrosinase: further insight into the mechanism of tyrosinase activity.
Biochem Biophys Res Commun. 2012 Jul 27;424(2):228-33. doi: 10.1016/j.bbrc.2012.06.074. Epub 2012 Jun 22.
2
Action of tyrosinase on ortho-substituted phenols: possible influence on browning and melanogenesis.
J Agric Food Chem. 2012 Jun 27;60(25):6447-53. doi: 10.1021/jf301238q. Epub 2012 Jun 18.
4
Synthesis of catechols from phenols via Pd-catalyzed silanol-directed C-H oxygenation.
J Am Chem Soc. 2011 Nov 9;133(44):17630-3. doi: 10.1021/ja208572v. Epub 2011 Oct 18.
6
How to conceptualize catalytic cycles? The energetic span model.
Acc Chem Res. 2011 Feb 15;44(2):101-10. doi: 10.1021/ar1000956. Epub 2010 Nov 10.
7
The first catalytic tyrosinase model system based on a mononuclear copper(I) complex: kinetics and mechanism.
Angew Chem Int Ed Engl. 2010 Aug 23;49(36):6438-42. doi: 10.1002/anie.201000973.
9
Biologically inspired oxidation catalysis.
Nature. 2008 Sep 18;455(7211):333-40. doi: 10.1038/nature07371.
10
Monooxygenase activity of type 3 copper proteins.
Acc Chem Res. 2007 Jul;40(7):592-600. doi: 10.1021/ar6000395. Epub 2007 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验