Nano-Electronics Centre, Advanced Technology Institute (ATI), University of Surrey, Guildford, GU2 7XH, UK.
Phys Chem Chem Phys. 2013 Jun 7;15(21):8237-44. doi: 10.1039/c3cp51334c. Epub 2013 Apr 23.
A method for the synthesis of metal nanoparticle coatings for plasmonic solar cells which can meet large scale industrial demands is demonstrated. A UV pulsed laser is utilized to fabricate Au and Ag nanoparticles on the surface of polymer materials which form the substrates for plasmonic organic photovoltaic devices to enhance their performance. Control of the particles' size and density is demonstrated. The optical and electrical effects of these embedded particles on the power conversion efficiency are examined rigorously using both experimental and computer simulation. Gold nanoparticles of particular size and spatial distribution enhance the device efficiency. Based on our findings, we propose design considerations for utilizing the entire AM1.5 spectrum using plasmonic structures towards enhancing the efficiency of polymer solar cells using broad spectrum plasmonics.
展示了一种可满足大规模工业需求的用于等离子体太阳能电池的金属纳米颗粒涂层的合成方法。利用紫外脉冲激光在构成等离子体有机光伏器件衬底的聚合物材料表面上制造 Au 和 Ag 纳米颗粒,以提高其性能。对颗粒的大小和密度进行了控制。使用实验和计算机模拟,严格检查了这些嵌入式颗粒对功率转换效率的光学和电学影响。具有特定尺寸和空间分布的金纳米颗粒增强了器件效率。基于我们的研究结果,我们提出了利用等离子体结构利用整个 AM1.5 光谱的设计考虑因素,以通过宽带等离子体学提高聚合物太阳能电池的效率。