Suppr超能文献

神经肌肉接头处递质释放位点的组织和功能。

Organization and function of transmitter release sites at the neuromuscular junction.

机构信息

Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA.

出版信息

J Physiol. 2013 Jul 1;591(13):3159-65. doi: 10.1113/jphysiol.2012.248625. Epub 2013 Apr 22.

Abstract

The neuromuscular junction is known as a strong and reliable synapse. It is strong because it releases an excess of chemical transmitter, beyond what is required to bring the postsynaptic muscle cell to threshold. Because the synapse can sustain suprathreshold muscle activation during short trains of action potentials, it is also reliable. The presynaptic mechanisms that lead to reliability during short trains of activity have only recently been elucidated. It appears that there are relatively few calcium channels in individual active zones, that channels open with a low probability during action potential stimulation and that even if channels open the resulting calcium flux only rarely triggers vesicle fusion. Thus, each synaptic vesicle may only associate with a small number of calcium channels, forming an unreliable single vesicle release site. Strength and reliability of the neuromuscular junction emerge as a result of its assembly from thousands of these unreliable single vesicle release sites. Hence, these synapses are strong while at the same time only releasing a small subset of available docked vesicles during each action potential, thus conserving transmitter release resources. This prevents significant depression during short trains of action potential activity and confers reliability.

摘要

神经肌肉接头被称为强大而可靠的突触。它之所以强大,是因为它释放了过量的化学递质,超过了使突触后肌细胞达到阈值所必需的量。由于突触在短串动作电位期间能够维持阈上肌肉激活,因此它也是可靠的。最近才阐明了导致短串活动期间可靠性的突触前机制。似乎单个活动区中的钙通道相对较少,在动作电位刺激期间通道以低概率打开,即使通道打开,产生的钙流也很少引发囊泡融合。因此,每个突触囊泡可能仅与少数钙通道相关联,形成一个不可靠的单个囊泡释放位点。神经肌肉接头的强度和可靠性是由数千个这种不可靠的单个囊泡释放位点组装而成的。因此,这些突触在每个动作电位期间只释放一小部分已停靠的囊泡,从而节约了递质释放资源,因此在短串动作电位活动期间不会出现明显的抑制,从而保证了可靠性。

相似文献

1
Organization and function of transmitter release sites at the neuromuscular junction.
J Physiol. 2013 Jul 1;591(13):3159-65. doi: 10.1113/jphysiol.2012.248625. Epub 2013 Apr 22.
3
Are unreliable release mechanisms conserved from NMJ to CNS?
Trends Neurosci. 2013 Jan;36(1):14-22. doi: 10.1016/j.tins.2012.09.009. Epub 2012 Oct 25.
5
Neuromodulation of activity-dependent synaptic enhancement at crayfish neuromuscular junction.
Brain Res. 1997 Oct 17;771(2):259-70. doi: 10.1016/s0006-8993(97)00812-3.
6
Rab3a deletion reduces vesicle docking and transmitter release at the mouse diaphragm synapse.
Neuroscience. 2007 Aug 10;148(1):1-6. doi: 10.1016/j.neuroscience.2007.06.011. Epub 2007 Jul 20.
7
Transmitter release site organization can predict synaptic function at the neuromuscular junction.
J Neurophysiol. 2018 Apr 1;119(4):1340-1355. doi: 10.1152/jn.00168.2017. Epub 2017 Dec 27.
8
Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.
J Neurophysiol. 1996 Jun;75(6):2451-66. doi: 10.1152/jn.1996.75.6.2451.
9
Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions.
J Physiol. 2006 Feb 15;571(Pt 1):83-99. doi: 10.1113/jphysiol.2005.098319. Epub 2005 Dec 8.

引用本文的文献

1
Age-Related Homeostatic Plasticity at Rodent Neuromuscular Junctions.
Cells. 2024 Oct 11;13(20):1684. doi: 10.3390/cells13201684.
4
Molecular Characterization of an SV Capture Site in the Mid-Region of the Presynaptic CaV2.1 Calcium Channel C-Terminal.
Front Cell Neurosci. 2018 May 11;12:127. doi: 10.3389/fncel.2018.00127. eCollection 2018.
5
Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging.
Neurosci Res. 2018 Feb;127:78-88. doi: 10.1016/j.neures.2017.11.014. Epub 2017 Dec 6.
8
Seasonal factors influence quantal transmitter release and calcium dependence at amphibian neuromuscular junctions.
Am J Physiol Regul Integr Comp Physiol. 2017 Sep 1;313(3):R202-R210. doi: 10.1152/ajpregu.00070.2017. Epub 2017 Jun 21.
9
Multiple roles of integrin-α3 at the neuromuscular junction.
J Cell Sci. 2017 May 15;130(10):1772-1784. doi: 10.1242/jcs.201103. Epub 2017 Apr 6.

本文引用的文献

1
An excess-calcium-binding-site model predicts neurotransmitter release at the neuromuscular junction.
Biophys J. 2013 Jun 18;104(12):2751-63. doi: 10.1016/j.bpj.2013.05.023.
2
Are unreliable release mechanisms conserved from NMJ to CNS?
Trends Neurosci. 2013 Jan;36(1):14-22. doi: 10.1016/j.tins.2012.09.009. Epub 2012 Oct 25.
3
Active zone density is conserved during synaptic growth but impaired in aged mice.
J Comp Neurol. 2012 Feb 1;520(2):434-52. doi: 10.1002/cne.22764.
4
Single-pixel optical fluctuation analysis of calcium channel function in active zones of motor nerve terminals.
J Neurosci. 2011 Aug 3;31(31):11268-81. doi: 10.1523/JNEUROSCI.1394-11.2011.
5
Active zones and the readily releasable pool of synaptic vesicles at the neuromuscular junction of the mouse.
J Neurosci. 2011 Feb 9;31(6):2000-8. doi: 10.1523/JNEUROSCI.4663-10.2011.
7
Ca2+ dependence of the binomial parameters p and n at the mouse neuromuscular junction.
J Neurophysiol. 2010 Feb;103(2):659-66. doi: 10.1152/jn.00708.2009. Epub 2009 Nov 25.
9
Recovery of mouse neuromuscular junctions from single and repeated injections of botulinum neurotoxin A.
J Physiol. 2008 Jul 1;586(13):3163-82. doi: 10.1113/jphysiol.2008.153569. Epub 2008 May 8.
10
Heterogeneity in synaptic vesicle release at neuromuscular synapses of mice expressing synaptopHluorin.
J Neurosci. 2008 Jan 2;28(1):325-35. doi: 10.1523/JNEUROSCI.3544-07.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验