Laghaei Rozita, Ma Jun, Tarr Tyler B, Homan Anne E, Kelly Lauren, Tilvawala Megha S, Vuocolo Blake S, Rajasekaran Harini P, Meriney Stephen D, Dittrich Markus
Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University , Pittsburgh, Pennsylvania.
Department of Neuroscience, Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania.
J Neurophysiol. 2018 Apr 1;119(4):1340-1355. doi: 10.1152/jn.00168.2017. Epub 2017 Dec 27.
We have investigated the impact of transmitter release site (active zone; AZ) structure on synaptic function by physically rearranging the individual AZ elements in a previously published frog neuromuscular junction (NMJ) AZ model into the organization observed in a mouse NMJ AZ. We have used this strategy, purposefully without changing the properties of AZ elements between frog and mouse models (even though there are undoubtedly differences between frog and mouse AZ elements in vivo), to directly test how structure influences function at the level of an AZ. Despite a similarly ordered ion channel array substructure within both frog and mouse AZs, frog AZs are much longer and position docked vesicles in a different location relative to AZ ion channels. Physiologically, frog AZs have a lower probability of transmitter release compared with mouse AZs, and frog NMJs facilitate strongly during short stimulus trains in contrast with mouse NMJs that depress slightly. Using our computer modeling approach, we found that a simple rearrangement of the AZ building blocks of the frog model into a mouse AZ organization could recapitulate the physiological differences between these two synapses. These results highlight the importance of simple AZ protein organization to synaptic function. NEW & NOTEWORTHY A simple rearrangement of the basic building blocks in the frog neuromuscular junction model into a mouse transmitter release site configuration predicted the major physiological differences between these two synapses, suggesting that transmitter release site structure and organization is a strong predictor of function.
我们通过将先前发表的青蛙神经肌肉接头(NMJ)活性区(AZ)模型中的各个AZ元件物理重排为在小鼠NMJ AZ中观察到的组织形式,研究了递质释放位点(活性区;AZ)结构对突触功能的影响。我们采用了这种策略,特意不改变青蛙和小鼠模型之间AZ元件的特性(尽管青蛙和小鼠的AZ元件在体内无疑存在差异),以直接测试结构在AZ水平上如何影响功能。尽管青蛙和小鼠的AZ中都有类似有序的离子通道阵列亚结构,但青蛙的AZ要长得多,并且相对于AZ离子通道,停靠的囊泡位置也不同。在生理上,与小鼠的AZ相比,青蛙的AZ递质释放概率较低,并且与略有抑制的小鼠NMJ相反,青蛙的NMJ在短刺激序列期间强烈易化。使用我们的计算机建模方法,我们发现将青蛙模型的AZ构建块简单重排为小鼠AZ组织形式可以重现这两种突触之间的生理差异。这些结果突出了简单的AZ蛋白组织对突触功能的重要性。新发现与值得注意的是,将青蛙神经肌肉接头模型中的基本构建块简单重排为小鼠递质释放位点配置,可以预测这两种突触之间的主要生理差异,这表明递质释放位点的结构和组织是功能的有力预测指标。