Suppr超能文献

RpoS 在霍乱弧菌亚致死浓度氨基糖苷类药物诱导的 SOS 反应中起核心作用。

RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae.

机构信息

Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.

出版信息

PLoS Genet. 2013;9(4):e1003421. doi: 10.1371/journal.pgen.1003421. Epub 2013 Apr 11.

Abstract

Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC.

摘要

细菌在各种生境中会遇到亚抑菌浓度的抗生素,这些低剂量对抗生素耐药性的选择起着关键作用。然而,这些亚致死浓度的生理效应及其与产生遗传多样性的细胞机制之间的观察到的联系仍然知之甚少。已知,与模式细菌大肠杆菌不同,氨基糖苷类药物(AGs)的亚最小抑菌浓度(sub-MIC)在霍乱弧菌中诱导 SOS 反应。SOS 是在 DNA 损伤时诱导的,由于 AGs 并不直接靶向 DNA,因此我们在这项研究中解决了两个问题:亚 MIC AGs 如何在霍乱弧菌中诱导 SOS,以及为什么它们在大肠杆菌中不能诱导 SOS。我们发现,当细菌在低于 MIC100 倍的妥布霉素浓度下生长时,霍乱弧菌细胞内的活性氧强烈增加,但大肠杆菌中则没有。我们使用流式细胞术和与 SOS 调控的 intIA 启动子融合的 GFP 融合蛋白,跟踪 AG 依赖性 SOS 诱导。通过测试不同的突变修复途径,我们发现碱基切除修复(BER)途径蛋白 MutY 的过表达缓解了霍乱弧菌中的这种 SOS 诱导,表明氧化鸟嘌呤在 AG 介导的间接 DNA 损伤中起作用。作为推论,我们建立了一个 BER 途径缺陷的大肠杆菌菌株在亚 MIC AGs 作用下诱导 SOS。最后,我们证明 RpoS 通用应激调节剂可防止大肠杆菌中氧化应激介导的 DNA 损伤形成。我们进一步表明,AG 介导的 SOS 诱导在远缘革兰氏阴性病原体肺炎克雷伯菌和发光杆菌中是保守的,这表明大肠杆菌对亚 MIC 抗生素的生理反应更像是一个例外,而不是一个范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7824/3623755/49ce6c134479/pgen.1003421.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验