Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, Paris, France.
Sorbonne Université, Collège Doctoral, Paris, France.
mBio. 2019 Jul 2;10(4):e01173-19. doi: 10.1128/mBio.01173-19.
We have previously identified mutants in which the stress response to subinhibitory concentrations of aminoglycoside is altered. One gene identified, VC1636, encodes a putative DNA/RNA helicase, recently named RadD in Here we combined extensive genetic characterization and high-throughput approaches in order to identify partners and molecular mechanisms involving RadD. We show that double-strand DNA breaks (DSBs) are formed upon subinhibitory tobramycin treatment in the absence of and and that formation of these DSBs can be overcome by RNase H1 overexpression. Loss of RNase H1, or of the transcription-translation coupling factor EF-P, is lethal in the deletion mutant. We propose that R-loops are formed upon sublethal aminoglycoside treatment, leading to the formation of DSBs that can be repaired by the RecBCD homologous recombination pathway, and that RadD counteracts such R-loop accumulation. We discuss how R-loops that can occur upon translation-transcription uncoupling could be the link between tobramycin treatment and DNA break formation. Bacteria frequently encounter low concentrations of antibiotics. Active antibiotics are commonly detected in soil and water at concentrations much below lethal concentration. Although sub-MICs of antibiotics do not kill bacteria, they can have a major impact on bacterial populations by contributing to the development of antibiotic resistance through mutations in originally sensitive bacteria or acquisition of DNA from resistant bacteria. It was shown that concentrations as low as 100-fold below the MIC can actually lead to the selection of antibiotic-resistant cells. We seek to understand how bacterial cells react to such antibiotic concentrations using , the Gram-negative bacterial paradigm, and , the causative agent of cholera. Our findings shed light on the processes triggered at the DNA level by antibiotics targeting translation, how damage occurs, and what the bacterial strategies are to respond to such DNA damage.
我们之前已经鉴定出一些突变体,它们对亚抑菌浓度氨基糖苷类药物的应激反应发生了改变。鉴定出的一个基因 VC1636 编码一个假定的 DNA/RNA 解旋酶,最近在 中被命名为 RadD。在这里,我们结合了广泛的遗传特征和高通量方法,以鉴定涉及 RadD 的伙伴和分子机制。我们表明,在没有 和 的情况下,亚抑菌浓度妥布霉素处理会形成双链 DNA 断裂 (DSB),而这些 DSB 的形成可以通过 RNase H1 过表达来克服。RNase H1 或转录-翻译偶联因子 EF-P 的缺失在 缺失突变体中是致命的。我们提出,在亚致死浓度的氨基糖苷类药物处理下会形成 R-环,导致 DSB 的形成,这些 DSB 可以通过 RecBCD 同源重组途径修复,而 RadD 则可以拮抗这种 R-环的积累。我们讨论了翻译-转录解偶联时可能发生的 R-环如何成为妥布霉素处理与 DNA 断裂形成之间的联系。细菌经常遇到低浓度的抗生素。活性抗生素在土壤和水中经常以远低于致死浓度的浓度被检测到。尽管抗生素的亚 MIC 不会杀死细菌,但它们可以通过在原本敏感的细菌中发生突变或从耐药细菌中获得 DNA,从而对细菌种群产生重大影响,导致抗生素耐药性的发展。研究表明,即使抗生素浓度比 MIC 低 100 倍,实际上也会导致抗生素耐药细胞的选择。我们试图使用革兰氏阴性菌的范例 和霍乱的病原体 来了解细菌细胞如何对这种抗生素浓度做出反应。我们的发现揭示了抗生素靶向翻译在 DNA 水平上引发的过程、如何发生损伤以及细菌应对这种 DNA 损伤的策略。