Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.
PLoS One. 2013 Apr 17;8(4):e62268. doi: 10.1371/journal.pone.0062268. Print 2013.
The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study the mechanisms involved in the resistance of two S. frugiperda strains collected in Brazil to chlorpyrifos (OP strain) or lambda-cyhalothrin (PYR strain) were investigated using molecular and genomic approaches. To examine the possible role of target-site insensitivity the genes encoding the organophosphate (acetylcholinesterase, AChE) and pyrethroid (voltage-gated sodium channel, VGSC) target-site proteins were PCR amplified. Sequencing of the S. frugiperda ace-1 gene identified several nucleotide changes in the OP strain when compared to a susceptible reference strain (SUS). These result in three amino acid substitutions, A201S, G227A and F290V, that have all been shown previously to confer organophosphate resistance in several other insect species. Sequencing of the gene encoding the VGSC in the PYR strain, identified mutations that result in three amino acid substitutions, T929I, L932F and L1014F, all of which have been shown previously to confer knockdown/super knockdown-type resistance in several arthropod species. To investigate the possible role of metabolic detoxification in the resistant phenotype of the OP and PYR stains all EST sequences available for S. frugiperda were used to design a gene-expression microarray. This was then used to compare gene expression in the resistant strains with the susceptible reference strain. Members of several gene families, previously implicated in metabolic resistance in other insects were found to be overexpressed in the resistant strains including glutathione S-transferases, cytochrome P450s and carboxylesterases. Taken together these results provide evidence that both target-site and metabolic mechanisms underlie the resistance of S. frugiperda to pyrethroids and organophosphates.
秋粘虫 Spodoptera frugiperda 是一种经济上重要的小谷物作物害虫,发生在美洲所有的玉米种植区。为了控制它,人们大量使用化学农药,然而,到目前为止,其抗性的分子机制尚未得到描述。在这项研究中,使用分子和基因组方法研究了在巴西收集的两个对毒死蜱(OP 菌株)或氯氟氰菊酯(PYR 菌株)具有抗性的 S. frugiperda 菌株的抗性机制。为了研究靶标不敏感性的可能作用,PCR 扩增了编码有机磷(乙酰胆碱酯酶,AChE)和拟除虫菊酯(电压门控钠通道,VGSC)靶标蛋白的基因。与敏感参考菌株(SUS)相比,对 OP 菌株的 S. frugiperda ace-1 基因进行测序,发现了几个核苷酸变化。这些变化导致三个氨基酸取代,A201S、G227A 和 F290V,这些变化以前已被证明在其他几种昆虫中赋予有机磷抗性。对 PYR 菌株编码 VGSC 的基因进行测序,发现了导致三个氨基酸取代的突变,T929I、L932F 和 L1014F,这些突变以前已被证明在几种节肢动物中赋予击倒/超击倒型抗性。为了研究代谢解毒作用在 OP 和 PYR 菌株抗性表型中的可能作用,使用 S. frugiperda 所有可用的 EST 序列设计了基因表达微阵列。然后将其用于比较抗性菌株与敏感参考菌株的基因表达。发现几个基因家族的成员在抗性菌株中过度表达,这些基因家族以前被认为与其他昆虫的代谢抗性有关,包括谷胱甘肽 S-转移酶、细胞色素 P450 和羧酸酯酶。综上所述,这些结果提供了证据表明,S. frugiperda 对拟除虫菊酯和有机磷的抗性既涉及靶标机制,也涉及代谢机制。