Zhang Calvin, Guy Robert D, Mulloney Brian, Zhang Qinghai, Lewis Timothy J
Departments of Mathematics and.
Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616; and.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13840-5. doi: 10.1073/pnas.1323208111. Epub 2014 Sep 8.
A fundamental challenge in neuroscience is to understand how biologically salient motor behaviors emerge from properties of the underlying neural circuits. Crayfish, krill, prawns, lobsters, and other long-tailed crustaceans swim by rhythmically moving limbs called swimmerets. Over the entire biological range of animal size and paddling frequency, movements of adjacent swimmerets maintain an approximate quarter-period phase difference with the more posterior limbs leading the cycle. We use a computational fluid dynamics model to show that this frequency-invariant stroke pattern is the most effective and mechanically efficient paddling rhythm across the full range of biologically relevant Reynolds numbers in crustacean swimming. We then show that the organization of the neural circuit underlying swimmeret coordination provides a robust mechanism for generating this stroke pattern. Specifically, the wave-like limb coordination emerges robustly from a combination of the half-center structure of the local central pattern generating circuits (CPGs) that drive the movements of each limb, the asymmetric network topology of the connections between local CPGs, and the phase response properties of the local CPGs, which we measure experimentally. Thus, the crustacean swimmeret system serves as a concrete example in which the architecture of a neural circuit leads to optimal behavior in a robust manner. Furthermore, we consider all possible connection topologies between local CPGs and show that the natural connectivity pattern generates the biomechanically optimal stroke pattern most robustly. Given the high metabolic cost of crustacean swimming, our results suggest that natural selection has pushed the swimmeret neural circuit toward a connection topology that produces optimal behavior.
神经科学中的一个基本挑战是理解生物学上显著的运动行为如何从底层神经回路的特性中产生。小龙虾、磷虾、对虾、龙虾和其他长尾甲壳类动物通过有节奏地移动称为游泳足的肢体来游泳。在动物大小和划水频率的整个生物学范围内,相邻游泳足的运动保持大约四分之一周期的相位差,后肢在周期中领先。我们使用计算流体动力学模型表明,这种频率不变的划水模式是甲壳类动物游泳在整个生物学相关雷诺数范围内最有效和机械效率最高的划水节奏。然后我们表明,游泳足协调背后的神经回路组织为产生这种划水模式提供了一种强大的机制。具体来说,波浪状的肢体协调有力地源于驱动每个肢体运动的局部中央模式发生器(CPG)的半中心结构、局部CPG之间连接的不对称网络拓扑以及我们通过实验测量的局部CPG的相位响应特性的组合。因此,甲壳类动物的游泳足系统是一个具体的例子,其中神经回路的架构以稳健方式导致最优行为。此外,我们考虑了局部CPG之间所有可能的连接拓扑,并表明自然连接模式最稳健地产生生物力学上最优的划水模式。鉴于甲壳类动物游泳的高代谢成本,我们的结果表明自然选择已将游泳足神经回路推向产生最优行为的连接拓扑。