Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark.
Anal Bioanal Chem. 2013 Jun;405(15):5037-48. doi: 10.1007/s00216-013-6954-6. Epub 2013 Apr 25.
In this paper, we describe data processing and metabolite identification approaches which lead to a rapid and semi-automated interpretation of metabolomics experiments. Data from metabolite fingerprinting using LC-ESI-Q-TOF/MS were processed with several open-source software packages, including XCMS and CAMERA to detect features and group features into compound spectra. Next, we describe the automatic scheduling of tandem mass spectrometry (MS) acquisitions to acquire a large number of MS/MS spectra, and the subsequent processing and computer-assisted annotation towards identification using the R packages MetShot, Rdisop, and the MetFusion application. We also implement a simple retention time prediction model using predicted lipophilicity logD, which predicts retention times within 42 s (6 min gradient) for most compounds in our setup. We putatively identified 44 common metabolites including several amino acids and phospholipids at metabolomics standards initiative (MSI) levels two and three and confirmed the majority of them by comparison with authentic standards at MSI level one. To aid both data integration within and data sharing between laboratories, we integrated data from two labs and mapped retention times between the chromatographic systems. Despite the different MS instrumentation and different chromatographic gradient programs, the mapped retention times agree within 26 s (20 min gradient) for 90% of the mapped features.
在本文中,我们描述了数据处理和代谢物鉴定方法,这些方法可快速且半自动地解释代谢组学实验。使用 LC-ESI-Q-TOF/MS 进行代谢指纹图谱分析所产生的数据,通过几个开源软件包进行处理,包括 XCMS 和 CAMERA,以检测特征并将特征组合成化合物图谱。接下来,我们描述了自动安排串联质谱 (MS) 采集以获取大量 MS/MS 光谱的过程,以及随后使用 R 包 MetShot、Rdisop 和 MetFusion 应用程序进行处理和计算机辅助注释以进行鉴定。我们还使用预测的亲脂性 logD 实施了一个简单的保留时间预测模型,该模型可在我们的设置中预测大多数化合物在 42 秒(6 分钟梯度)内的保留时间。我们推定鉴定了 44 种常见代谢物,包括几种氨基酸和磷脂,达到代谢物标准倡议 (MSI) 水平 2 和 3,并通过与 MSI 水平 1 的真实标准进行比较,确认了其中的大多数。为了帮助实验室内部和实验室之间的数据集成和共享,我们整合了两个实验室的数据,并在色谱系统之间映射保留时间。尽管 MS 仪器和不同的色谱梯度方案不同,但 90%的映射特征的映射保留时间在 26 秒(20 分钟梯度)内一致。