Suppr超能文献

RAMClust:一种新的特征聚类方法,可实现基于光谱匹配的代谢组学数据注释。

RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data.

机构信息

Proteomics and Metabolomics Facility, Colorado State University , Fort Collins, Colorado 80523, United States.

出版信息

Anal Chem. 2014 Jul 15;86(14):6812-7. doi: 10.1021/ac501530d. Epub 2014 Jun 26.

Abstract

Metabolomic data are frequently acquired using chromatographically coupled mass spectrometry (MS) platforms. For such datasets, the first step in data analysis relies on feature detection, where a feature is defined by a mass and retention time. While a feature typically is derived from a single compound, a spectrum of mass signals is more a more-accurate representation of the mass spectrometric signal for a given metabolite. Here, we report a novel feature grouping method that operates in an unsupervised manner to group signals from MS data into spectra without relying on predictability of the in-source phenomenon. We additionally address a fundamental bottleneck in metabolomics, annotation of MS level signals, by incorporating indiscriminant MS/MS (idMS/MS) data implicitly: feature detection is performed on both MS and idMS/MS data, and feature-feature relationships are determined simultaneously from the MS and idMS/MS data. This approach facilitates identification of metabolites using in-source MS and/or idMS/MS spectra from a single experiment, reduces quantitative analytical variation compared to single-feature measures, and decreases false positive annotations of unpredictable phenomenon as novel compounds. This tool is released as a freely available R package, called RAMClustR, and is sufficiently versatile to group features from any chromatographic-spectrometric platform or feature-finding software.

摘要

代谢组学数据通常使用与色谱法耦合的质谱(MS)平台进行采集。对于这样的数据集,数据分析的第一步依赖于特征检测,其中特征由质量和保留时间定义。虽然特征通常源自单个化合物,但质谱信号的光谱更准确地代表了给定代谢物的质谱信号。在这里,我们报告了一种新颖的无监督特征分组方法,该方法无需依赖源内现象的可预测性即可将 MS 数据中的信号分组到光谱中。我们还通过隐式纳入无判别性 MS/MS(idMS/MS)数据来解决代谢组学中的一个基本瓶颈,即 MS 水平信号的注释:在 MS 和 idMS/MS 数据上执行特征检测,并从 MS 和 idMS/MS 数据中同时确定特征-特征关系。这种方法通过单个实验中的源内 MS 和/或 idMS/MS 光谱来促进代谢物的鉴定,与单特征测量相比减少了定量分析变化,并减少了不可预测现象的假阳性注释作为新化合物。该工具作为一个免费提供的 R 包发布,称为 RAMClustR,它非常灵活,可以对来自任何色谱-光谱平台或特征发现软件的特征进行分组。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验