Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297 Bordeaux, France ; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297 Bordeaux, France.
Front Neurosci. 2013 Apr 18;7:61. doi: 10.3389/fnins.2013.00061. eCollection 2013.
The fine control of molecules mediating communication in the nervous system is key to adjusting neuronal signaling during development and in maintaining the stability of established networks in the face of altered sensory input. To prevent the culmination of pathological recurrent network excitation or debilitating periods of quiescence, adaptive alterations occur in the signaling molecules and ion channels that control membrane excitability and synaptic transmission. However, rather than encoding (and thus "hardwiring") modified gene copies, the nervous systems of metazoa have opted for expanding on post-transcriptional pre-mRNA splicing by altering key encoded amino acids using a conserved mechanism of A-to-I RNA editing: the enzymatic deamination of adenosine to inosine. Inosine exhibits similar base-pairing properties to guanosine with respect to tRNA codon recognition, replication by polymerases, and RNA secondary structure (i.e.,: forming-capacity). In addition to recoding within the open reading frame, adenosine deamination also occurs with high frequency throughout the non-coding transcriptome, where it affects multiple aspects of RNA metabolism and gene expression. Here, we describe the recoding function of key RNA editing targets in the mammalian central nervous system and their potential to be regulated. We will then discuss how interactions of A-to-I editing with gene expression and alternative splicing could play a wider role in regulating the neuronal transcriptome. Finally, we will highlight the increasing complexity of this multifaceted control hub by summarizing new findings from high-throughput studies.
分子在神经系统中通讯的精细调控是调整神经元信号在发育过程中以及在面对改变的感觉输入时维持已建立的网络稳定性的关键。为了防止病理性的网络兴奋反复出现或使人衰弱的静止期,控制膜兴奋性和突触传递的信号分子和离子通道会发生适应性改变。然而,后生动物的神经系统并没有选择通过编码(从而“硬连线”)修改后的基因副本,而是选择使用一种保守的 A 到 I RNA 编辑机制来改变关键编码氨基酸,从而扩展转录后前体 mRNA 剪接:腺苷的酶促脱氨作用转化为肌苷。肌苷在 tRNA 密码子识别、聚合酶复制和 RNA 二级结构(即:形成能力)方面与鸟嘌呤具有相似的碱基配对特性。除了在开放阅读框内重新编码外,腺苷脱氨作用在整个非编码转录组中也高频发生,影响 RNA 代谢和基因表达的多个方面。在这里,我们描述了哺乳动物中枢神经系统中关键 RNA 编辑靶标在重新编码方面的功能及其潜在的调节性。然后,我们将讨论 A 到 I 编辑与基因表达和选择性剪接的相互作用如何在调节神经元转录组方面发挥更广泛的作用。最后,我们将通过总结高通量研究的新发现,来突出这个多方面调控中心日益增加的复杂性。