Department of Basic Medical Sciences, Ghent University, Belgium.
Radiother Oncol. 2013 Jun;107(3):295-9. doi: 10.1016/j.radonc.2013.03.021. Epub 2013 Apr 22.
Design a model for prediction of acute dysphagia following intensity-modulated radiotherapy (IMRT) for head and neck cancer. Illustrate the use of the EMLasso technique for model selection.
Radiation-induced dysphagia was scored using CTCAE v.3.0 in 189 head and neck cancer patients. Clinical data (gender, age, nicotine and alcohol use, diabetes, tumor location), treatment parameters (chemotherapy, surgery involving the primary tumor, lymph node dissection, overall treatment time), dosimetric parameters (doses delivered to pharyngeal constrictor (PC) muscles and esophagus) and 19 genetic polymorphisms were used in model building. The predicting model was achieved by EMLasso, i.e. an EM algorithm to account for missing values, applied to penalized logistic regression, which allows for variable selection by tuning the penalization parameter through crossvalidation on AUC, thus avoiding overfitting.
Fifty-three patients (28%) developed acute ≥ grade 3 dysphagia. The final model has an AUC of 0.71 and contains concurrent chemotherapy, D2 to the superior PC and the rs3213245 (XRCC1) polymorphism. The model's false negative rate and false positive rate in the optimal operation point on the ROC curve are 21% and 49%, respectively.
This study demonstrated the utility of the EMLasso technique for model selection in predictive radiogenetics.
设计一个预测头颈部癌症调强放疗后急性吞咽困难的模型。展示 EMLasso 技术在模型选择中的应用。
189 例头颈部癌症患者采用 CTCAE v.3.0 对放疗诱导的吞咽困难进行评分。临床资料(性别、年龄、尼古丁和酒精使用、糖尿病、肿瘤位置)、治疗参数(化疗、原发肿瘤手术、淋巴结清扫、总治疗时间)、剂量学参数(咽缩肌和食管接受的剂量)和 19 个遗传多态性用于模型构建。通过 EMLasso(即一种用于处理缺失值的 EM 算法,应用于惩罚逻辑回归)实现预测模型,通过交叉验证在 AUC 上调整惩罚参数,从而避免过度拟合,实现变量选择。
53 例(28%)患者发生急性≥3 级吞咽困难。最终模型的 AUC 为 0.71,包含同期化疗、上咽缩肌 D2 区和 rs3213245(XRCC1)多态性。在 ROC 曲线的最佳操作点,该模型的假阴性率和假阳性率分别为 21%和 49%。
本研究证明了 EMLasso 技术在预测放射遗传学模型选择中的实用性。