Department of Chemistry, Center for the Physics of Living Cells and Beckman Institute, University of Illinois, Urbana, IL 61801, USA.
Proc Natl Acad Sci U S A. 2013 May 14;110(20):8087-92. doi: 10.1073/pnas.1219163110. Epub 2013 Apr 25.
Using a newly developed microsecond pressure-jump apparatus, we monitor the refolding kinetics of the helix-stabilized five-helix bundle protein λYA, the Y22W/Q33Y/G46,48A mutant of λ-repressor fragment 6-85, from 3 μs to 5 ms after a 1,200-bar P-drop. In addition to a microsecond phase, we observe a slower 1.4-ms phase during refolding to the native state. Unlike temperature denaturation, pressure denaturation produces a highly reversible helix-coil-rich state. This difference highlights the importance of the denatured initial condition in folding experiments and leads us to assign a compact nonnative helical trap as the reason for slower P-jump-induced refolding. To complement the experiments, we performed over 50 μs of all-atom molecular dynamics P-drop refolding simulations with four different force fields. Two of the force fields yield compact nonnative states with misplaced α-helix content within a few microseconds of the P-drop. Our overall conclusion from experiment and simulation is that the pressure-denatured state of λYA contains mainly residual helix and little β-sheet; following a fast P-drop, at least some λ*YA forms misplaced helical structure within microseconds. We hypothesize that nonnative helix at helix-turn interfaces traps the protein in compact nonnative conformations. These traps delay the folding of at least some of the population for 1.4 ms en route to the native state. Based on molecular dynamics, we predict specific mutations at the helix-turn interfaces that should speed up refolding from the pressure-denatured state, if this hypothesis is correct.
利用新开发的微秒压力跃变装置,我们监测了螺旋稳定的五螺旋束蛋白 λYA 的复性动力学,λ 阻遏物片段 6-85 的 Y22W/Q33Y/G46,48A 突变体,在 1200 巴 P 下降后 3 μs 到 5 毫秒。除了微秒相之外,我们还观察到在复性到天然状态时,还有一个较慢的 1.4 毫秒相。与温度变性不同,压力变性产生了一个高度可逆的螺旋-线圈丰富状态。这种差异突出了变性初始条件在折叠实验中的重要性,并导致我们将紧凑的非天然螺旋陷阱归因于较慢的 P 跳跃诱导复性的原因。为了补充实验,我们使用四个不同的力场进行了超过 50 微秒的全原子分子动力学 P 下降复性模拟。两个力场在 P 下降后的几微秒内产生了具有错位α-螺旋含量的紧凑非天然状态。我们从实验和模拟得出的总体结论是,λYA 的压力变性状态主要含有残留的螺旋和少量的β-折叠;在快速 P 下降后,至少一些 λ*YA 在微秒内形成了错位的螺旋结构。我们假设非天然螺旋在螺旋-转角界面处的结构陷阱将蛋白质固定在紧凑的非天然构象中。这些陷阱使至少一部分蛋白质在到达天然状态的过程中延迟了 1.4 毫秒的折叠。基于分子动力学,我们预测了在螺旋-转角界面处的特定突变,如果这一假设是正确的,这些突变应该会加速从压力变性状态下的复性。