Suppr超能文献

基于 PLSPM 的检验统计量用于检测病例对照设计全基因组关联研究中的基因-基因共关联。

A PLSPM-based test statistic for detecting gene-gene co-association in genome-wide association study with case-control design.

机构信息

Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China.

出版信息

PLoS One. 2013 Apr 19;8(4):e62129. doi: 10.1371/journal.pone.0062129. Print 2013.

Abstract

For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods.

摘要

对于全基因组关联数据分析,一个通路上的两个基因、两个连锁基因区域内的两个 SNP 或一个基因内的两个连锁外显子内的 SNP 通常是相互关联的。因此,我们提出了基因-基因共关联的概念,它不仅指由于传统的近乎独立条件下的相互作用,还指两个基因之间的相关性。此外,我们基于偏最小二乘路径建模 (PLSPM) 构建了一种用于检测基因-基因共关联的新统计量。通过模拟,在三种不同类型的共关联下,突出了传统相互作用和共关联之间的关系。模拟和真实数据分析都表明,基于 PLSPM 的提出的统计方法比基于单 SNP 的逻辑模型、基于 PCA 的逻辑模型和其他基于基因的方法具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a0b/3631168/8d84cc407b73/pone.0062129.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验