Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816-2362, USA.
BMC Bioinformatics. 2013 Apr 27;14:142. doi: 10.1186/1471-2105-14-142.
RNAalifold, a popular computational method for RNA consensus structure prediction, incorporates covarying mutations into a thermodynamic model to fold the aligned RNA sequences. When quantifying covariance, it evaluates conserved signals of two aligned columns with base-pairing rules. This scoring scheme performs better than some other approaches, such as mutual information. However it ignores the phylogenetic history of the aligned sequences, which is an important criterion to evaluate the level of sequence covariance.
In this article, in order to improve the accuracy of consensus structure folding, we propose a novel approach named PhyloRNAalifold. It incorporates the number of covarying mutations on the phylogenetic tree of the aligned sequences into the covariance scoring of RNAalifold. The benchmarking results show that the new scoring scheme of PhyloRNAalifold can improve the consensus structure detection of RNAalifold.
Incorporating additional phylogenetic information of aligned sequences into the covariance scoring of RNAalifold can improve its performance of consensus structures folding. This improvement is correlated with alignment characteristics, such as pair-wise identity and the number of sequences in the alignment.
RNAalifold 是一种流行的计算方法,用于 RNA 共识结构预测,它将共变突变纳入热力学模型中,以折叠对齐的 RNA 序列。在量化共变时,它使用碱基配对规则评估两个对齐列的保守信号。这种评分方案比其他一些方法(如互信息)表现更好。然而,它忽略了对齐序列的系统发育历史,这是评估序列共变水平的一个重要标准。
在本文中,为了提高共识结构折叠的准确性,我们提出了一种名为 PhyloRNAalifold 的新方法。它将对齐序列系统发育树上的共变突变数量纳入 RNAalifold 的共变评分中。基准测试结果表明,PhyloRNAalifold 的新评分方案可以提高 RNAalifold 的共识结构检测能力。
将对齐序列的附加系统发育信息纳入 RNAalifold 的共变评分中可以提高其共识结构折叠的性能。这种改进与对齐特征相关,例如序列两两同一性和对齐序列的数量。