School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
BMC Microbiol. 2013 Apr 27;13:92. doi: 10.1186/1471-2180-13-92.
Pseudomonas fluorescens is a common inhabitant of soil and the rhizosphere environment. In addition to potential applications in biocontrol and bioremediation, P. fluorescens is of interest as a model for studying bacterial survival and fitness in soil. A previous study using in vivo expression technology (IVET) identified 22 genes in P. fluorescens Pf0-1 which are up-regulated during growth in Massachusetts loam soil, a subset of which are important for fitness in soil. Despite this and other information on adaptation to soil, downstream applications such as biocontrol or bioremediation in diverse soils remain underdeveloped. We undertook an IVET screen to identify Pf0-1 genes induced during growth in arid Nevada desert soil, to expand our understanding of growth in soil environments, and examine whether Pf0-1 uses general or soil type-specific mechanisms for success in soil environments.
Twenty six genes were identified. Consistent with previous studies, these genes cluster in metabolism, information storage/processing, regulation, and 'hypothetical', but there was no overlap with Pf0-1 genes induced during growth in loam soil. Mutation of both a putative glutamine synthetase gene (Pfl01_2143) and a gene predicted to specify a component of a type VI secretion system (Pfl01_5595) resulted in a decline in arid soil persistence. When examined in sterile loam soil, mutation of Pfl01_5595 had no discernible impact. In contrast, the Pfl01_2143 mutant was not impaired in persistence in sterile soil, but showed a significant reduction in competitive fitness.
These data support the conclusion that numerous genes are specifically important for survival and fitness in natural environments, and will only be identified using in vivo approaches. Furthermore, we suggest that a subset of soil-induced genes is generally important in different soils, while others may contribute to success in specific types of soil. The importance of glutamine synthetase highlights a critical role for nitrogen metabolism in soil fitness. The implication of Type 6 secretion underscores the importance of microbial interactions in natural environments. Understanding the general and soil-specific genes will greatly improve the persistence of designed biocontrol and bioremediation strains within the target environment.
荧光假单胞菌是土壤和根际环境的常见居民。除了在生物防治和生物修复方面的潜在应用外,荧光假单胞菌还作为研究细菌在土壤中生存和适应能力的模型而受到关注。先前使用体内表达技术(IVET)的研究鉴定了 Pf0-1 中的 22 个基因,这些基因在马萨诸塞壤土中生长时上调,其中一部分对土壤中的适应性很重要。尽管如此,以及其他关于适应土壤的信息,在不同土壤中的生物防治或生物修复等下游应用仍未得到充分发展。我们进行了 IVET 筛选,以鉴定 Pf0-1 在生长于干旱内华达沙漠土壤中时诱导的基因,以扩展我们对土壤环境中生长的理解,并研究 Pf0-1 是否使用普遍或特定于土壤类型的机制在土壤环境中取得成功。
鉴定出 26 个基因。与先前的研究一致,这些基因聚类在代谢、信息存储/处理、调节和“假设”中,但与在壤土中生长时诱导的 Pf0-1 基因没有重叠。突变一个假定的谷氨酰胺合成酶基因(Pfl01_2143)和一个预测指定一种 VI 型分泌系统组件的基因(Pfl01_5595)都导致在干旱土壤中的持久性下降。在无菌壤土中检查时,突变 Pfl01_5595 没有明显的影响。相比之下,Pfl01_2143 突变体在无菌土壤中的持久性没有受损,但在竞争适应性方面有显著降低。
这些数据支持这样的结论,即许多基因对自然环境中的生存和适应性非常重要,只有使用体内方法才能识别。此外,我们认为,一组土壤诱导的基因在不同的土壤中普遍重要,而其他基因可能有助于特定类型的土壤的成功。谷氨酰胺合成酶的重要性突出了氮代谢在土壤适应性中的关键作用。VI 型分泌的暗示强调了微生物相互作用在自然环境中的重要性。了解普遍和土壤特异性基因将极大地提高设计的生物防治和生物修复菌株在目标环境中的持久性。