Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, 3000 Leuven, Belgium.
Trends Genet. 2013 Jul;29(7):403-11. doi: 10.1016/j.tig.2013.03.004. Epub 2013 Apr 26.
To understand the functional role of specific neurons in micro- and macro-brain circuitry, health, and disease, it is critical to control their activity precisely. This ambitious goal was first achieved by optogenetics, allowing researchers to increase or decrease neural activity artificially with high temporal and spatial precision. In contrast to the revolution optogenetics engendered in invertebrate and rodent research, only a few studies have reported optogenetic-induced neuronal and behavioral effects in primates. Such studies are nonetheless critical before optogenetics can be applied in a clinical setting. Here, we review the state-of-the-art tools for performing optogenetics in mammals, emphasizing recent neuronal and behavioral results obtained in nonhuman primates.
为了理解特定神经元在微脑和宏观脑回路、健康和疾病中的功能作用,精确控制它们的活动至关重要。这一雄心勃勃的目标最初是通过光遗传学实现的,它使研究人员能够以高时间和空间精度人为地增加或减少神经活动。与光遗传学在无脊椎动物和啮齿动物研究中引发的革命相比,只有少数研究报告了光遗传学在灵长类动物中诱导神经元和行为的效果。然而,在光遗传学能够应用于临床之前,这些研究至关重要。在这里,我们回顾了在哺乳动物中进行光遗传学的最新工具,重点介绍了非人类灵长类动物中最近获得的神经元和行为结果。