Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
Biosens Bioelectron. 2013 Sep 15;47:451-60. doi: 10.1016/j.bios.2013.01.071. Epub 2013 Apr 3.
For implantable bioelectronic devices, the interface between the device and the biological environment requires significant attention as it dictates the device performance in vivo. Non-specific protein adsorption onto the device surface is the initial stage of many degradation mechanisms that will ultimately compromise the functionality of the device. In order to preserve the functionality of any implanted bioelectronics overtime, protein adsorption must be controlled. This review paper outlines two major approaches to minimize protein adsorption onto the surface of implantable electronics. The first approach is surface coating, which minimizes close proximity interactions between proteins and device surfaces by immobilizing electrically neutral hydrophilic polymers as surface coating. These coatings reduce protein fouling by steric repulsion and formation of a hydration layer which acts as both a physical and energetic barrier that minimize protein adsorption onto the device. Relevant performances of various conventional hydrophilic coatings are discussed. The second approach is surface patterning using arrays of hydrophobic nanostructures through photolithography techniques. By establishing a large slip length via super hydrophobic surfaces, the amount of proteins adsorbed to the surface of the device can be reduced. The last section discusses emerging surface coating techniques utilizing zwitterionic polymers where ultralow-biofouling surfaces have been demonstrated. These surface modification techniques may significantly improve the long-term functionality of implantable bioelectronics, thus allowing researchers to overcome challenges to diagnose and treat chronic neurological and cardiovascular diseases.
对于可植入生物电子设备,设备与生物环境之间的接口需要引起高度关注,因为它决定了设备在体内的性能。非特异性蛋白质吸附到设备表面是许多降解机制的初始阶段,这些机制最终会损害设备的功能。为了使任何植入的生物电子设备在长时间内保持功能,必须控制蛋白质的吸附。这篇综述文章概述了两种主要的方法来最小化可植入电子产品表面的蛋白质吸附。第一种方法是表面涂层,通过固定电中性的亲水性聚合物作为表面涂层,最大限度地减少蛋白质与设备表面的近距离相互作用。这些涂层通过空间排斥和形成水合层来减少蛋白质污垢,水合层既充当物理和能量屏障,又能最大限度地减少蛋白质吸附到设备上。讨论了各种常规亲水涂层的相关性能。第二种方法是通过光刻技术使用疏水纳米结构阵列进行表面图案化。通过建立大滑动长度的超疏水表面,可以减少吸附到设备表面的蛋白质的量。最后一部分讨论了利用两性离子聚合物的新兴表面涂层技术,其中已经证明了超低生物污垢表面。这些表面改性技术可以显著提高可植入生物电子设备的长期功能,从而使研究人员能够克服诊断和治疗慢性神经和心血管疾病的挑战。