Suppr超能文献

Intraglomerular platelet aggregation and experimental glomerulonephritis.

作者信息

Poelstra K, Hardonk M J, Koudstaal J, Bakker W W

机构信息

Department of Pathology, University of Groningen, The Netherlands.

出版信息

Kidney Int. 1990 Jun;37(6):1500-8. doi: 10.1038/ki.1990.141.

Abstract

Oxygen free radical production inhibits ADPase-mediated antithrombotic action. Different forms of experimental glomerulonephritis (GN) are characterized by early glomerular influx of inflammatory cells and thrombus formation. The causal relationship of these inflammatory events is obscure. Previous studies have shown that glomerular ADPase in the rat kidney may function as a potent antithrombotic principle, whereas this enzyme is highly sensitive for oxygen free radicals. To study whether O2- producing inflammatory cells are able to induce intraglomerular thrombosis via impairment of ADPase, we investigated influx of inflammatory cells in relation to glomerular ADPase activity and platelet aggregation in three models of GN. In two of these models (anti-Thy1 and anti-GBM GN) influx of neutrophils and thrombus formation occurs, whereas in anti-FX1A nephritis this aspect of the inflammatory phase is not present. The results show a relationship between influx of oxygen free radical-producing cells, reduction of glomerular ADPase activity and increased platelet aggregation. Moreover, it is shown that impairment of glomerular ADPase and increased platelet aggregation in anti-Thy1 and anti-GBM GN could be reduced by treatment with superoxide dismutase and catalase. The demonstration that activated neutrophils perfused ex vivo in the rat kidney can directly affect glomerular ADPase and antithrombotic potential in an O2- dependent manner, further supports the proposed sequence of events; oxygen free radicals produced by activated neutrophils reduce glomerular ADPase activity, leading to facilitation of thrombus formation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验