Suppr超能文献

助推贝塔回归。

Boosted beta regression.

机构信息

Department of Medical Informatics, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.

出版信息

PLoS One. 2013 Apr 23;8(4):e61623. doi: 10.1371/journal.pone.0061623. Print 2013.

Abstract

Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1). Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

摘要

有界结果的回归分析是应用统计学中的一个常见问题。典型的例子包括百分比结果的回归模型和在有界尺度上测量的评分分析。在本文中,我们考虑了贝塔回归,它是对数模型在响应连续在区间(0,1)上的情况的推广。因此,贝塔回归是分析百分比响应的一种方便工具。拟合贝塔回归模型的经典方法是使用最大似然估计,然后进行基于 AIC 的变量选择。作为这种已建立但不稳定的方法的替代方法,我们提出了一种新的估计技术,称为增强型贝塔回归。使用增强型贝塔回归估计,可以以高效的方式同时进行变量选择。此外,还可以使用灵活的非线性协变量效应来对百分比响应的均值和方差进行建模。因此,新方法可以解决常见问题,如过分散和非二项式方差结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c649/3633987/d05e4db168fb/pone.0061623.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验