Suppr超能文献

一种用于DNA甲基化研究中β值分析的统计模型。

A statistical model for the analysis of beta values in DNA methylation studies.

作者信息

Weinhold Leonie, Wahl Simone, Pechlivanis Sonali, Hoffmann Per, Schmid Matthias

机构信息

Department of Medical Biometry, Informatics and Epidemiology, University of Bonn, Sigmund-Freud-Str. 25, Bonn, D-53127, Germany.

Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherber, D-85764, Germany.

出版信息

BMC Bioinformatics. 2016 Nov 22;17(1):480. doi: 10.1186/s12859-016-1347-4.

Abstract

BACKGROUND

The analysis of DNA methylation is a key component in the development of personalized treatment approaches. A common way to measure DNA methylation is the calculation of beta values, which are bounded variables of the form M/(M+U) that are generated by Illumina's 450k BeadChip array. The statistical analysis of beta values is considered to be challenging, as traditional methods for the analysis of bounded variables, such as M-value regression and beta regression, are based on regularity assumptions that are often too strong to adequately describe the distribution of beta values.

RESULTS

We develop a statistical model for the analysis of beta values that is derived from a bivariate gamma distribution for the signal intensities M and U. By allowing for possible correlations between M and U, the proposed model explicitly takes into account the data-generating process underlying the calculation of beta values. Using simulated data and a real sample of DNA methylation data from the Heinz Nixdorf Recall cohort study, we demonstrate that the proposed model fits our data significantly better than beta regression and M-value regression.

CONCLUSION

The proposed model contributes to an improved identification of associations between beta values and covariates such as clinical variables and lifestyle factors in epigenome-wide association studies. It is as easy to apply to a sample of beta values as beta regression and M-value regression.

摘要

背景

DNA甲基化分析是个性化治疗方法发展的关键组成部分。测量DNA甲基化的一种常用方法是计算β值,β值是由Illumina公司的450k BeadChip芯片阵列生成的形式为M/(M + U)的有界变量。β值的统计分析被认为具有挑战性,因为用于分析有界变量的传统方法,如M值回归和β回归,是基于通常过于严格而无法充分描述β值分布的正则性假设。

结果

我们开发了一种用于分析β值的统计模型,该模型源自信号强度M和U的双变量伽马分布。通过考虑M和U之间可能的相关性,所提出的模型明确考虑了β值计算背后的数据生成过程。使用模拟数据和来自海因茨·尼克斯多夫召回队列研究的DNA甲基化数据真实样本,我们证明所提出的模型比β回归和M值回归能更好地拟合我们的数据。

结论

所提出的模型有助于在全表观基因组关联研究中更好地识别β值与协变量(如临床变量和生活方式因素)之间的关联。它应用于β值样本与β回归和M值回归一样容易。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2d2/5120494/daa17692f1e2/12859_2016_1347_Fig1_HTML.jpg

相似文献

1
A statistical model for the analysis of beta values in DNA methylation studies.
BMC Bioinformatics. 2016 Nov 22;17(1):480. doi: 10.1186/s12859-016-1347-4.
2
On the potential of models for location and scale for genome-wide DNA methylation data.
BMC Bioinformatics. 2014 Jul 3;15:232. doi: 10.1186/1471-2105-15-232.
3
Imputation of missing covariate values in epigenome-wide analysis of DNA methylation data.
Epigenetics. 2016;11(2):132-9. doi: 10.1080/15592294.2016.1145328. Epub 2016 Feb 18.
5
Epigenome-wide methylation in DNA from peripheral blood as a marker of risk for breast cancer.
Breast Cancer Res Treat. 2014 Dec;148(3):665-73. doi: 10.1007/s10549-014-3209-y. Epub 2014 Nov 19.
6
Statistical challenges of high-dimensional methylation data.
Stat Med. 2014 Dec 30;33(30):5347-57. doi: 10.1002/sim.6251. Epub 2014 Jul 4.
7
Nightshift work, chronotype, and genome-wide DNA methylation in blood.
Epigenetics. 2017;12(10):833-840. doi: 10.1080/15592294.2017.1366407. Epub 2017 Nov 27.
8
Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy.
Int J Epidemiol. 2016 Oct;45(5):1644-1655. doi: 10.1093/ije/dyw196. Epub 2016 Sep 1.
9
Exploring the utility of human DNA methylation arrays for profiling mouse genomic DNA.
Genomics. 2013 Jul;102(1):38-46. doi: 10.1016/j.ygeno.2013.04.014. Epub 2013 Apr 29.
10
Tobacco smoking and smoking-related DNA methylation are associated with the development of frailty among older adults.
Epigenetics. 2017 Feb;12(2):149-156. doi: 10.1080/15592294.2016.1271855. Epub 2016 Dec 21.

引用本文的文献

1
RASGEF1C methylation for the distinguishment and classification of benign and malignant thyroid tumors.
Clin Epigenetics. 2025 Jul 14;17(1):124. doi: 10.1186/s13148-025-01931-y.
3
High expression of COL8A1 predicts poor prognosis and promotes EMT in papillary thyroid cancer.
Endocr Connect. 2024 Nov 21;13(12). doi: 10.1530/EC-24-0279. Print 2024 Dec 1.
4
6
8
EpiVisR: exploratory data analysis and visualization in epigenome-wide association analyses.
BMC Bioinformatics. 2022 Jul 23;23(1):292. doi: 10.1186/s12859-022-04836-2.
9
DNA methylation profile in beef cattle is influenced by additive genetics and age.
Sci Rep. 2022 Jul 14;12(1):12016. doi: 10.1038/s41598-022-16350-9.
10
Low-dose hydralazine reduces albuminuria and glomerulosclerosis in a mouse model of obesity-related chronic kidney disease.
Diabetes Obes Metab. 2022 Oct;24(10):1939-1949. doi: 10.1111/dom.14778. Epub 2022 Jun 29.

本文引用的文献

1
2
Characterization of whole-genome autosomal differences of DNA methylation between men and women.
Epigenetics Chromatin. 2015 Oct 19;8:43. doi: 10.1186/s13072-015-0035-3. eCollection 2015.
3
Predicting tumor purity from methylation microarray data.
Bioinformatics. 2015 Nov 1;31(21):3401-5. doi: 10.1093/bioinformatics/btv370. Epub 2015 Jun 25.
4
5
Boosting - an unusual yet attractive optimiser.
Methods Inf Med. 2014;53(6):417-8. doi: 10.3414/ME13-10-0123.
6
Statistical challenges of high-dimensional methylation data.
Stat Med. 2014 Dec 30;33(30):5347-57. doi: 10.1002/sim.6251. Epub 2014 Jul 4.
7
On the potential of models for location and scale for genome-wide DNA methylation data.
BMC Bioinformatics. 2014 Jul 3;15:232. doi: 10.1186/1471-2105-15-232.
9
MethylSig: a whole genome DNA methylation analysis pipeline.
Bioinformatics. 2014 Sep 1;30(17):2414-22. doi: 10.1093/bioinformatics/btu339. Epub 2014 May 16.
10
CpG sites associated with cigarette smoking: analysis of epigenome-wide data from the Sister Study.
Environ Health Perspect. 2014 Jul;122(7):673-8. doi: 10.1289/ehp.1307480. Epub 2014 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验