Suppr超能文献

一种仿生控制方法提高了人形机器人在动态环境中行动的适应性。

A Biomimetic Control Method Increases the Adaptability of a Humanoid Robot Acting in a Dynamic Environment.

作者信息

Capolei Marie Claire, Angelidis Emmanouil, Falotico Egidio, Lund Henrik Hautop, Tolu Silvia

机构信息

Automation and Control Group, Department of Electrical Engineering, Technical University of Denmark, Copenhagen, Denmark.

Landesforschungsinstitut des Freistaats Bayern, An-Institut, Technical University of Munich, Munich, Germany.

出版信息

Front Neurorobot. 2019 Aug 28;13:70. doi: 10.3389/fnbot.2019.00070. eCollection 2019.

Abstract

One of the big challenges in robotics is to endow agents with autonomous and adaptive capabilities. With this purpose, we embedded a cerebellum-based control system into a humanoid robot that becomes capable of handling dynamical external and internal complexity. The cerebellum is the area of the brain that coordinates and predicts the body movements throughout the body-environment interactions. Different biologically plausible cerebellar models are available in literature and have been employed for motor learning and control of simplified objects. We built the canonical cerebellar microcircuit by combining machine learning and computational neuroscience techniques. The control system is composed of the adaptive cerebellar module and a classic control method; their combination allows a fast adaptive learning and robust control of the robotic movements when external disturbances appear. The control structure is built offline, but the dynamic parameters are learned during an online-phase training. The aforementioned adaptive control system has been tested in the Neuro-robotics Platform with the virtual humanoid robot iCub. In the experiment, the robot iCub has to balance with the hand a table with a ball running on it. In contrast with previous attempts of solving this task, the proposed neural controller resulted able to quickly adapt when the internal and external conditions change. Our bio-inspired and flexible control architecture can be applied to different robotic configurations without an excessive tuning of the parameters or customization. The cerebellum-based control system is indeed able to deal with changing dynamics and interactions with the environment. Important insights regarding the relationship between the bio-inspired control system functioning and the complexity of the task to be performed are obtained.

摘要

机器人技术面临的一大挑战是赋予智能体自主和自适应能力。为此,我们将基于小脑的控制系统嵌入到一个人形机器人中,使其能够处理动态的外部和内部复杂性。小脑是大脑中在身体与环境相互作用过程中协调和预测身体运动的区域。文献中有不同的具有生物学合理性的小脑模型,并已用于简化物体的运动学习和控制。我们通过结合机器学习和计算神经科学技术构建了典型的小脑微电路。该控制系统由自适应小脑模块和经典控制方法组成;它们的结合使得在出现外部干扰时能够对机器人运动进行快速自适应学习和鲁棒控制。控制结构是离线构建的,但动态参数是在在线阶段训练中学习的。上述自适应控制系统已在神经机器人平台上使用虚拟人形机器人iCub进行了测试。在实验中,机器人iCub必须用手平衡一张上面有球滚动的桌子。与之前解决此任务的尝试不同,所提出的神经控制器在内部和外部条件变化时能够快速适应。我们受生物启发的灵活控制架构可以应用于不同的机器人配置,而无需对参数进行过多调整或定制。基于小脑的控制系统确实能够应对不断变化的动力学以及与环境的相互作用。我们获得了关于受生物启发的控制系统功能与待执行任务复杂性之间关系的重要见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b813/6722230/2d2a0616e87f/fnbot-13-00070-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验