Suppr超能文献

肌肉内躯干刺激对 6 名脊髓损伤患者手动轮椅推进力学的影响。

Effects of intramuscular trunk stimulation on manual wheelchair propulsion mechanics in 6 subjects with spinal cord injury.

机构信息

Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH; Case Western Reserve University, Cleveland, OH.

出版信息

Arch Phys Med Rehabil. 2013 Oct;94(10):1997-2005. doi: 10.1016/j.apmr.2013.04.010. Epub 2013 Apr 26.

Abstract

OBJECTIVE

To quantify the effects of stabilizing the paralyzed trunk and pelvis with electrical stimulation on manual wheelchair propulsion.

DESIGN

Single-subject design case series with subjects acting as their own concurrent controls.

SETTING

Hospital-based clinical biomechanics laboratory.

PARTICIPANTS

Individuals (N=6; 4 men, 2 women; mean age ± SD, 46 ± 10.8y) who were long-time users (6.1 ± 3.9y) of implanted neuroprostheses for lower extremity function and had chronic (8.6 ± 2.8y) midcervical- or thoracic-level injuries (C6-T10).

INTERVENTIONS

Continuous low-level stimulation to the hip (gluteus maximus, posterior adductor, or hamstrings) and trunk extensor (lumbar erector spinae and/or quadratus lumborum) muscles with implanted intramuscular electrodes.

MAIN OUTCOME MEASURES

Pushrim kinetics (peak resultant force, fraction effective force), kinematics (cadence, stroke length, maximum forward lean), and peak shoulder moment at preferred speed over 10-m level surface; speed, pushrim kinetics, and subjective ratings of effort for level 100-m sprints and up a 30.5-m ramp of approximately 5% grade.

RESULTS

Three of 5 subjects demonstrated reduced peak resultant pushrim forces (P≤.014) and improved efficiency (P≤.048) with stimulation during self-paced level propulsion. Peak sagittal shoulder moment remained unchanged in 3 subjects and increased in 2 others (P<.001). Maximal forward trunk lean also increased by 19% to 26% (P<.001) with stimulation in these 3 subjects. Stroke lengths were unchanged by stimulation in all subjects, and 2 showed extremely small (5%) but statistically significant increases in cadence (P≤.021). Performance measures for sprints and inclines were generally unchanged with stimulation; however, subjects consistently rated propulsion with stimulation to be easier for both surfaces.

CONCLUSIONS

Stabilizing the pelvis and trunk with low levels of continuous electrical stimulation to the lumbar trunk and hip extensors can positively impact the mechanics of manual wheelchair propulsion and reduce both perceived and physical measures of effort.

摘要

目的

量化使用电刺激稳定瘫痪躯干和骨盆对手动轮椅推进的影响。

设计

采用自身对照的单病例设计系列。

地点

基于医院的临床生物力学实验室。

参与者

个体(N=6;4 名男性,2 名女性;平均年龄±标准差,46±10.8 岁),他们是下肢功能植入神经假体的长期使用者(6.1±3.9 年),并患有慢性(8.6±2.8 年)颈中部或胸段损伤(C6-T10)。

干预

使用植入式肌内电极对臀部(臀大肌、后内收肌或腘绳肌)和躯干伸肌(腰竖脊肌和/或腰方肌)进行连续低水平刺激。

主要观察指标

在 10m 水平表面以最佳速度时的推把动力学(峰值总力、有效力分数)、运动学(步频、冲程长度、最大前倾角)和峰值肩部力矩;水平 100m 冲刺和 30.5m 坡度约 5%的坡度的速度、推把动力学和主观用力评分。

结果

在自我调节的水平推进过程中,5 名受试者中有 3 名的峰值总推把力(P≤.014)和效率(P≤.048)降低,3 名受试者的峰值矢状肩部力矩保持不变,另外 2 名的肩部力矩增加(P<.001)。在这 3 名受试者中,最大前倾角也增加了 19%至 26%(P<.001)。在所有受试者中,刺激对冲程长度没有影响,其中 2 名受试者的步频有极微小(5%)但具有统计学意义的增加(P≤.021)。在刺激条件下,冲刺和倾斜的性能指标通常没有变化;然而,受试者一致认为刺激下的推进更容易。

结论

使用对腰椎和臀部伸肌的低水平连续电刺激稳定骨盆和躯干,可以对手动轮椅推进的力学产生积极影响,并降低感知和体力努力的测量值。

相似文献

1
Effects of intramuscular trunk stimulation on manual wheelchair propulsion mechanics in 6 subjects with spinal cord injury.
Arch Phys Med Rehabil. 2013 Oct;94(10):1997-2005. doi: 10.1016/j.apmr.2013.04.010. Epub 2013 Apr 26.
2
Effects of stimulating hip and trunk muscles on seated stability, posture, and reach after spinal cord injury.
Arch Phys Med Rehabil. 2013 Sep;94(9):1766-75. doi: 10.1016/j.apmr.2013.02.023. Epub 2013 Mar 13.
4
Manual wheelchair pushrim biomechanics and axle position.
Arch Phys Med Rehabil. 2000 May;81(5):608-13. doi: 10.1016/s0003-9993(00)90043-1.
5
Biomechanical analysis of functional electrical stimulation on trunk musculature during wheelchair propulsion.
Neurorehabil Neural Repair. 2009 Sep;23(7):717-25. doi: 10.1177/1545968308331145. Epub 2009 Mar 4.
6
Shoulder magnetic resonance imaging abnormalities, wheelchair propulsion, and gender.
Arch Phys Med Rehabil. 2003 Nov;84(11):1615-20. doi: 10.1053/s0003-9993(03)00282-x.
7
Three-dimensional pushrim forces during two speeds of wheelchair propulsion.
Am J Phys Med Rehabil. 1997 Sep-Oct;76(5):420-6. doi: 10.1097/00002060-199709000-00013.
8
Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
Disabil Rehabil Assist Technol. 2019 Apr;14(3):209-216. doi: 10.1080/17483107.2017.1417499. Epub 2017 Dec 22.
9
Shoulder Functional Electrical Stimulation During Wheelchair Propulsion in Spinal Cord Injury Subjects.
Top Spinal Cord Inj Rehabil. 2017 Spring;23(2):168-173. doi: 10.1310/sci2302-168.
10
Relationship Between Hand Contact Angle and Shoulder Loading During Manual Wheelchair Propulsion by Individuals with Paraplegia.
Top Spinal Cord Inj Rehabil. 2015 Fall;21(4):313-24. doi: 10.1310/sci2104-313. Epub 2015 Nov 16.

引用本文的文献

2
Electrical Stimulation and Motor Function Rehabilitation in Spinal Cord Injury: A Systematic Review.
Cureus. 2024 May 31;16(5):e61436. doi: 10.7759/cureus.61436. eCollection 2024 May.
5
Trunk Posture from Randomly Oriented Accelerometers.
Sensors (Basel). 2022 Oct 10;22(19):7690. doi: 10.3390/s22197690.
7
Augmented feedback for manual wheelchair propulsion technique training in a virtual reality simulator.
J Neuroeng Rehabil. 2021 Sep 21;18(1):142. doi: 10.1186/s12984-021-00936-x.
9
A closed-loop self-righting controller for seated balance in the coronal and diagonal planes following spinal cord injury.
Med Eng Phys. 2020 Dec;86:47-56. doi: 10.1016/j.medengphy.2020.10.010. Epub 2020 Oct 15.

本文引用的文献

1
Effects of stimulating hip and trunk muscles on seated stability, posture, and reach after spinal cord injury.
Arch Phys Med Rehabil. 2013 Sep;94(9):1766-75. doi: 10.1016/j.apmr.2013.02.023. Epub 2013 Mar 13.
2
Optimization of selective stimulation parameters for multi-contact electrodes.
J Neuroeng Rehabil. 2013 Feb 27;10:25. doi: 10.1186/1743-0003-10-25.
4
The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study.
Clin Biomech (Bristol). 2012 Nov;27(9):879-86. doi: 10.1016/j.clinbiomech.2012.07.002. Epub 2012 Jul 24.
7
Trunk acceleration for neuroprosthetic control of standing: a pilot study.
J Appl Biomech. 2012 Feb;28(1):85-92. doi: 10.1123/jab.28.1.85. Epub 2011 Oct 4.
8
Load on the upper extremity in manual wheelchair propulsion.
J Electromyogr Kinesiol. 1991 Dec;1(4):270-80. doi: 10.1016/1050-6411(91)90014-V.
9
The influence of altering push force effectiveness on upper extremity demand during wheelchair propulsion.
J Biomech. 2010 Oct 19;43(14):2771-9. doi: 10.1016/j.jbiomech.2010.06.020. Epub 2010 Aug 2.
10
Prevalence of rotator cuff tear in paraplegic patients compared with controls.
J Bone Joint Surg Am. 2010 Jan;92(1):23-30. doi: 10.2106/JBJS.H.01373.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验