Suppr超能文献

使用实时环境和交通数据以及不平衡面板数据模型的碰撞频率建模

Crash Frequency Modeling Using Real-Time Environmental and Traffic Data and Unbalanced Panel Data Models.

作者信息

Chen Feng, Chen Suren, Ma Xiaoxiang

机构信息

Key Laboratory of Road & Traffic Engineering of the Ministry of Education, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.

Department of Civil & Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA.

出版信息

Int J Environ Res Public Health. 2016 Jun 18;13(6):609. doi: 10.3390/ijerph13060609.

Abstract

Traffic and environmental conditions (e.g., weather conditions), which frequently change with time, have a significant impact on crash occurrence. Traditional crash frequency models with large temporal scales and aggregated variables are not sufficient to capture the time-varying nature of driving environmental factors, causing significant loss of critical information on crash frequency modeling. This paper aims at developing crash frequency models with refined temporal scales for complex driving environments, with such an effort providing more detailed and accurate crash risk information which can allow for more effective and proactive traffic management and law enforcement intervention. Zero-inflated, negative binomial (ZINB) models with site-specific random effects are developed with unbalanced panel data to analyze hourly crash frequency on highway segments. The real-time driving environment information, including traffic, weather and road surface condition data, sourced primarily from the Road Weather Information System, is incorporated into the models along with site-specific road characteristics. The estimation results of unbalanced panel data ZINB models suggest there are a number of factors influencing crash frequency, including time-varying factors (e.g., visibility and hourly traffic volume) and site-varying factors (e.g., speed limit). The study confirms the unique significance of the real-time weather, road surface condition and traffic data to crash frequency modeling.

摘要

经常随时间变化的交通和环境条件(如天气状况)对碰撞事故的发生有重大影响。传统的具有大时间尺度和综合变量的碰撞频率模型不足以捕捉驾驶环境因素的时变特性,导致在碰撞频率建模方面关键信息大量丢失。本文旨在为复杂驾驶环境开发具有精细时间尺度的碰撞频率模型,通过这样的努力提供更详细和准确的碰撞风险信息,从而实现更有效和主动的交通管理及执法干预。利用不平衡面板数据开发了具有特定地点随机效应的零膨胀负二项式(ZINB)模型,以分析高速公路路段每小时的碰撞频率。主要来源于道路气象信息系统的实时驾驶环境信息,包括交通、天气和路面状况数据,与特定地点的道路特征一起被纳入模型。不平衡面板数据ZINB模型的估计结果表明,有许多因素影响碰撞频率,包括时变因素(如能见度和每小时交通流量)和地点变化因素(如限速)。该研究证实了实时天气、路面状况和交通数据对碰撞频率建模具有独特的重要性。

相似文献

引用本文的文献

9
Statistical tests under Dallal's model: Asymptotic and exact methods.达拉尔模型下的统计检验:渐近法与精确法
PLoS One. 2020 Nov 30;15(11):e0242722. doi: 10.1371/journal.pone.0242722. eCollection 2020.

本文引用的文献

2
A review of the effect of traffic and weather characteristics on road safety.交通与天气特征对道路安全影响的综述
Accid Anal Prev. 2014 Nov;72:244-56. doi: 10.1016/j.aap.2014.06.017. Epub 2014 Jul 31.
7
The roles of exposure and speed in road safety analysis.暴露和速度在道路安全分析中的作用。
Accid Anal Prev. 2012 Sep;48:464-71. doi: 10.1016/j.aap.2012.03.005. Epub 2012 Mar 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验