Endocannabinoid Research Group, Institute of Cybernetics Eduardo Caianiello, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy.
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):E2229-38. doi: 10.1073/pnas.1219485110. Epub 2013 Apr 29.
Acute or chronic alterations in energy status alter the balance between excitatory and inhibitory synaptic transmission and associated synaptic plasticity to allow for the adaptation of energy metabolism to new homeostatic requirements. The impact of such changes on endocannabinoid and cannabinoid receptor type 1 (CB1)-mediated modulation of synaptic transmission and strength is not known, despite the fact that this signaling system is an important target for the development of new drugs against obesity. We investigated whether CB1-expressing excitatory vs. inhibitory inputs to orexin-A-containing neurons in the lateral hypothalamus are altered in obesity and how this modifies endocannabinoid control of these neurons. In lean mice, these inputs are mostly excitatory. By confocal and ultrastructural microscopic analyses, we observed that in leptin-knockout (ob/ob) obese mice, and in mice with diet-induced obesity, orexinergic neurons receive predominantly inhibitory CB1-expressing inputs and overexpress the biosynthetic enzyme for the endocannabinoid 2-arachidonoylglycerol, which retrogradely inhibits synaptic transmission at CB1-expressing axon terminals. Patch-clamp recordings also showed increased CB1-sensitive inhibitory innervation of orexinergic neurons in ob/ob mice. These alterations are reversed by leptin administration, partly through activation of the mammalian target of rapamycin pathway in neuropeptide-Y-ergic neurons of the arcuate nucleus, and are accompanied by CB1-mediated enhancement of orexinergic innervation of target brain areas. We propose that enhanced inhibitory control of orexin-A neurons, and their CB1-mediated disinhibition, are a consequence of leptin signaling impairment in the arcuate nucleus. We also provide initial evidence of the participation of this phenomenon in hyperphagia and hormonal dysregulation in obesity.
能量状态的急性或慢性改变会改变兴奋性和抑制性突触传递之间的平衡,并影响相关的突触可塑性,以适应新的稳态需求。尽管这种信号系统是开发针对肥胖的新药的重要靶点,但内源性大麻素和大麻素受体 1(CB1)介导的突触传递和强度调节的变化的影响尚不清楚。我们研究了外侧下丘脑含有食欲素-A 的神经元中 CB1 表达的兴奋性与抑制性输入在肥胖中的变化,以及这种变化如何改变内源性大麻素对这些神经元的控制。在瘦小鼠中,这些输入主要是兴奋性的。通过共聚焦和超微结构分析,我们观察到在瘦素敲除(ob/ob)肥胖小鼠和饮食诱导肥胖的小鼠中,食欲素能神经元接收主要是抑制性的 CB1 表达输入,并过度表达内源性大麻素 2-花生四烯酸甘油的生物合成酶,该酶逆行抑制 CB1 表达轴突末梢的突触传递。膜片钳记录也显示 ob/ob 小鼠中食欲素能神经元的 CB1 敏感抑制性传入增加。这些改变可通过给予瘦素逆转,部分通过激活弓状核神经肽 Y 能神经元中的哺乳动物雷帕霉素靶蛋白途径,并且伴随着 CB1 介导的食欲素能传入对靶脑区的增强。我们提出,内侧下丘脑神经元中食欲素-A 神经元的抑制性控制增强及其 CB1 介导的去抑制是弓状核瘦素信号受损的结果。我们还提供了该现象参与肥胖症中多食和激素失调的初步证据。