Basic, Translational and Molecular Neurogenetics Research Unit in Neurosciences, Health Sciences Research Institute Germans Trias y Pujol (IGTP), Badalona, Barcelona, Spain.
Hum Mol Genet. 2013 Sep 1;22(17):3425-37. doi: 10.1093/hmg/ddt197. Epub 2013 Apr 29.
An expansion of glutamines within the human ataxin-1 protein underlies spinocerebellar ataxia type 1 (SCA1), a dominantly inherited neurodegenerative disorder characterized by ataxia and loss of cerebellar Purkinje neurons. Although the mechanisms linking the mutation to the disease remain unclear, evidence indicates that it involves a combination of both gain and loss of functions of ataxin-1. We previously showed that the mutant ataxin-1 interacts with Anp32a, a potent and selective PP2A inhibitor, suggesting a role of PP2A in SCA1. Herein, we found a new function of ataxin-1: the modulation of Pp2a activity and the regulation of its holoenzyme composition, with the polyglutamine mutation within Atxn1 altering this function in the SCA1 mouse cerebellum before disease onset. We show that ataxin-1 enhances Pp2a-bβ expression and down-regulates Anp32a levels without affecting post-translational modifications of Pp2a catalytic subunit (Pp2a-c) known to regulate Pp2a activity. In contrast, mutant Atxn1 induces a decrease in Y307-phosphorylation in Pp2a-c, known to enhance its activity, while reducing Pp2a-b expression and inhibiting Anp32a levels. qRT-PCR and chromatin immunoprecipitation analyses show that ataxin-1-mediated regulations of the Pp2a-bβ subunit, specifically bβ2, and of Anp32a occur at the transcriptional level. The Pp2a pathway alterations were confirmed by identified phosphorylation changes of the known Pp2a-substrates, Erk2 and Gsk3β. Similarly, mutant ataxin-1-expressing SH-SY5Y cells exhibit abnormal neuritic morphology, decreased levels of both PP2A-Bβ and ANP32A, and PP2A pathway alterations, all of which are ameliorated by overexpressing ANP32A. Our results point to dysregulation of this newly assigned function of ataxin-1 in SCA1 uncovering new potential targets for therapy.
人类ataxin-1 蛋白中的谷氨酰胺扩张是脊髓小脑性共济失调 1 型(SCA1)的基础,这是一种显性遗传性神经退行性疾病,其特征是共济失调和小脑浦肯野神经元丧失。尽管将突变与疾病联系起来的机制尚不清楚,但有证据表明,它涉及ataxin-1 的功能增益和丧失的组合。我们之前表明,突变型 ataxin-1 与 Anp32a 相互作用,Anp32a 是一种有效的、选择性的 PP2A 抑制剂,这表明 PP2A 在 SCA1 中发挥作用。在此,我们发现了 ataxin-1 的新功能:调节 Pp2a 活性及其全酶组成,ataxin-1 中的多谷氨酰胺突变在疾病发作前改变 SCA1 小鼠小脑的此功能。我们发现 ataxin-1 增强了 Pp2a-bβ的表达并下调了 Anp32a 的水平,而不影响已知调节 Pp2a 活性的 Pp2a 催化亚基(Pp2a-c)的翻译后修饰。相反,突变型 Atxn1 诱导 Pp2a-c 中的 Y307 磷酸化减少,已知这会增强其活性,同时降低 Pp2a-b 的表达并抑制 Anp32a 的水平。qRT-PCR 和染色质免疫沉淀分析表明,ataxin-1 介导的 Pp2a-bβ亚基(特别是 bβ2)和 Anp32a 的调节发生在转录水平。已知的 Pp2a 底物 Erk2 和 Gsk3β 的磷酸化变化证实了 Pp2a 途径的改变。同样,表达突变型 ataxin-1 的 SH-SY5Y 细胞表现出异常的神经突形态,PP2A-Bβ 和 ANP32A 的水平降低,以及 Pp2a 途径的改变,所有这些都通过过表达 ANP32A 得到改善。我们的结果表明,SCA1 中 ataxin-1 的这种新功能失调揭示了新的潜在治疗靶点。