Suppr超能文献

通过 Fc 片段将抗体连接到金纳米棒上:合成和分子特异性成像。

Conjugation of antibodies to gold nanorods through Fc portion: synthesis and molecular specific imaging.

机构信息

Department of Biomedical Engineering and §Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, United States.

出版信息

Bioconjug Chem. 2013 Jun 19;24(6):878-88. doi: 10.1021/bc3004815. Epub 2013 May 14.

Abstract

Anisotropic gold nanorods provide a convenient combination of properties, such as tunability of plasmon resonances and strong extinction cross sections in the near-infrared to red spectral region. These properties have created significant interest in the development of antibody conjugation methods for synthesis of targeted nanorods for a number of biomedical applications, including molecular specific imaging and therapy. Previously published conjugation approaches have achieved molecular specificity. However, the current conjugation methods have several downsides including low stability and potential cytotoxicity of bioconjugates that are produced by electrostatic interactions, as well as lack of control over antibody orientation during covalent conjugation. Here we addressed these shortcomings by introducing directional antibody conjugation to the gold nanorod surface. The directional conjugation is achieved through the carbohydrate moiety, which is located on one of the heavy chains of the Fc portion of most antibodies. The carbohydrate is oxidized under mild conditions to a hydrazide reactive aldehyde group. Then, a heterofunctional linker with hydrazide and dithiol groups is used to attach antibodies to gold nanorods. The directional conjugation approach was characterized using electron microscopy, zeta potential, and extinction spectra. We also determined spectral changes associated with nanorod aggregation; these spectral changes can be used as a convenient quality control of nanorod bioconjugates. Molecular specificity of the synthesized antibody targeted nanorods was demonstrated using hyperspectral, optical and photoacoustic imaging of cancer cell culture models. Additionally, we observed characteristic changes in optical spectra of molecular specific nanorods after their interactions with cancer cells; the observed spectral signatures can be explored for sensitive cancer detection.

摘要

各向异性金纳米棒提供了一系列方便的性质组合,例如等离子体共振的可调谐性和近红外到红光区域的强消光截面。这些特性引起了人们对抗体偶联方法的开发产生了浓厚的兴趣,这些方法用于合成针对多种生物医学应用的靶向纳米棒,包括分子特异性成像和治疗。以前发表的偶联方法已经实现了分子特异性。然而,目前的偶联方法存在一些缺点,包括通过静电相互作用产生的生物缀合物的低稳定性和潜在细胞毒性,以及在共价偶联过程中对抗体取向缺乏控制。在这里,我们通过将定向抗体偶联到金纳米棒表面来解决这些缺点。定向偶联是通过位于大多数抗体 Fc 部分的重链之一上的糖基部分实现的。该糖基在温和条件下被氧化为酰腙反应性醛基。然后,使用带有酰肼和二硫键的杂官能化连接子将抗体连接到金纳米棒上。使用电子显微镜、ζ电位和消光谱对定向偶联方法进行了表征。我们还确定了与纳米棒聚集相关的光谱变化;这些光谱变化可用作纳米棒生物缀合物的方便质量控制。使用癌症细胞培养模型的高光谱、光学和光声成像证明了合成的抗体靶向纳米棒的分子特异性。此外,我们观察到与癌细胞相互作用后分子特异性纳米棒的光学光谱发生了特征变化;可以探索观察到的光谱特征用于灵敏的癌症检测。

相似文献

1
Conjugation of antibodies to gold nanorods through Fc portion: synthesis and molecular specific imaging.
Bioconjug Chem. 2013 Jun 19;24(6):878-88. doi: 10.1021/bc3004815. Epub 2013 May 14.
2
The stabilization and targeting of surfactant-synthesized gold nanorods.
Nanotechnology. 2009 Oct 28;20(43):434005. doi: 10.1088/0957-4484/20/43/434005. Epub 2009 Oct 2.
3
In vitro assessment of antibody-conjugated gold nanorods for systemic injections.
J Nanobiotechnology. 2014 Dec 5;12:55. doi: 10.1186/s12951-014-0055-3.
4
Azide-derivatized gold nanorods: functional materials for "click" chemistry.
Langmuir. 2008 Jan 1;24(1):266-72. doi: 10.1021/la7026303. Epub 2007 Dec 6.
5
Gold nanorods decorated with a cancer drug for multimodal imaging and therapy.
Faraday Discuss. 2018 Apr 1;207:423-435. doi: 10.1039/c7fd00185a. Epub 2018 Jan 22.
6
Synthesis of gold nanorods and their functionalization with bovine serum albumin for optical hyperthermia.
J Biomed Nanotechnol. 2014 Aug;10(8):1440-9. doi: 10.1166/jbn.2014.1932.
7
Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects.
Photochem Photobiol. 2009 Jan-Feb;85(1):21-32. doi: 10.1111/j.1751-1097.2008.00507.x.
8
The impact of size and surface ligand of gold nanorods on liver cancer accumulation and photothermal therapy in the second near-infrared window.
J Colloid Interface Sci. 2020 Apr 1;565:186-196. doi: 10.1016/j.jcis.2020.01.026. Epub 2020 Jan 13.
10
Applications of gold nanorods for cancer imaging and photothermal therapy.
Methods Mol Biol. 2010;624:343-57. doi: 10.1007/978-1-60761-609-2_23.

引用本文的文献

1
Single-Molecule Multivalent Interactions Revealed by Plasmon-Enhanced Fluorescence.
ACS Nano. 2024 Dec 31;18(52):35429-35442. doi: 10.1021/acsnano.4c12600. Epub 2024 Dec 16.
2
Dual-Shaped Silver Nanoparticle Labels for Electrochemical Detection of Bioassays.
ACS Appl Nano Mater. 2021 Oct 22;4(10):10764-10770. doi: 10.1021/acsanm.1c02207. Epub 2021 Oct 13.
3
Nanoparticle Targeting with Antibodies in the Central Nervous System.
BME Front. 2023 Mar 31;4:0012. doi: 10.34133/bmef.0012. eCollection 2023.
4
Icosahedral gold nanoparticles decorated with hexon protein: a surrogate for adenovirus serotype 5.
Anal Bioanal Chem. 2023 May;415(11):2081-2090. doi: 10.1007/s00216-022-04368-x. Epub 2022 Oct 24.
5
pH-responsive targeted gold nanoparticles for photoacoustic imaging of tumor microenvironments.
Nanoscale Adv. 2018 Dec 13;1(2):554-564. doi: 10.1039/c8na00190a. eCollection 2019 Feb 12.
6
Treatment of Wound Infections in a Mouse Model Using Zn-Releasing Phage Bound to Gold Nanorods.
ACS Nano. 2022 Mar 22;16(3):4756-4774. doi: 10.1021/acsnano.2c00048. Epub 2022 Mar 3.
7
Targeted contrast agents and activatable probes for photoacoustic imaging of cancer.
Chem Soc Rev. 2022 Feb 7;51(3):829-868. doi: 10.1039/d0cs00771d.
8
Gold nanoparticles conjugated with DNA aptamer for photoacoustic detection of human matrix metalloproteinase-9.
Photoacoustics. 2021 Sep 27;25:100307. doi: 10.1016/j.pacs.2021.100307. eCollection 2022 Mar.
10
In Vitro Cellular Uptake Studies of Self-Assembled Fluorinated Nanoparticles Labelled with Antibodies.
Nanomaterials (Basel). 2021 Jul 24;11(8):1906. doi: 10.3390/nano11081906.

本文引用的文献

1
Gold nanorods: from synthesis and properties to biological and biomedical applications.
Adv Mater. 2009 Dec 28;21(48):4880-4910. doi: 10.1002/adma.200802789. Epub 2009 Jul 24.
3
Photoacoustic tomography: in vivo imaging from organelles to organs.
Science. 2012 Mar 23;335(6075):1458-62. doi: 10.1126/science.1216210.
4
Emerging concepts of laser-activated nanoparticles for tissue bonding.
J Biomed Opt. 2012 Jan;17(1):010701. doi: 10.1117/1.JBO.17.1.010701.
5
Gold nanoparticles delivery in mammalian live cells: a critical review.
Nano Rev. 2010;1. doi: 10.3402/nano.v1i0.4889. Epub 2010 Feb 22.
7
Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods.
Biomed Opt Express. 2011 Jul 1;2(7):1828-35. doi: 10.1364/BOE.2.001828. Epub 2011 Jun 2.
8
In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars.
J Mater Chem. 2011 Jan 1;21(9):2841-2844. doi: 10.1039/C0JM04194G.
9
Silver nanostructure sensing platform for maximum-contrast fluorescence cell imaging.
J Biomed Opt. 2011 May;16(5):056008. doi: 10.1117/1.3579157.
10
Beating cancer in multiple ways using nanogold.
Chem Soc Rev. 2011 Jul;40(7):3391-404. doi: 10.1039/c0cs00180e. Epub 2011 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验