Suppr超能文献

利用图像处理评估人工神经网络和神经模糊技术在樱桃成熟过程中估算抗氧化活性和花色苷含量的潜力。

Evaluating the potential of artificial neural network and neuro-fuzzy techniques for estimating antioxidant activity and anthocyanin content of sweet cherry during ripening by using image processing.

机构信息

Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.

出版信息

J Sci Food Agric. 2014 Jan 15;94(1):95-101. doi: 10.1002/jsfa.6202. Epub 2013 Jun 17.

Abstract

BACKGROUND

This paper presents a versatile way for estimating antioxidant activity and anthocyanin content at different ripening stages of sweet cherry by combining image processing and two artificial intelligence (AI) techniques. In comparison with common time-consuming laboratory methods for determining these important attributes, this new way is economical and much faster. The accuracy of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models was studied to estimate the outputs. Sensitivity analysis and principal component analysis were used with ANN and ANFIS respectively to specify the most effective attributes on outputs.

RESULTS

Among the designed ANNs, two hidden layer networks with 11-14-9-1 and 11-6-20-1 architectures had the highest correlation coefficients and lowest error values for modeling antioxidant activity (R = 0.93) and anthocyanin content (R = 0.98) respectively. ANFIS models with triangular and two-term Gaussian membership functions gave the best results for antioxidant activity (R = 0.87) and anthocyanin content (R = 0.90) respectively.

CONCLUSION

Comparison of the models showed that ANN outperformed ANFIS for this case. By considering the advantages of the applied system and the accuracy obtained in somewhat similar studies, it can be concluded that both techniques presented here have good potential to be used as estimators of proposed attributes.

摘要

背景

本文提出了一种结合图像处理和两种人工智能(AI)技术,在甜樱桃不同成熟阶段估算抗氧化活性和花青素含量的通用方法。与常见的耗时实验室方法相比,这种新方法经济且快速得多。研究了人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)模型的准确性,以估算输出。分别使用敏感性分析和主成分分析对 ANN 和 ANFIS 进行了分析,以确定对输出最有效的属性。

结果

在所设计的神经网络中,具有 11-14-9-1 和 11-6-20-1 架构的两个隐藏层网络在建模抗氧化活性(R = 0.93)和花青素含量(R = 0.98)方面具有最高的相关系数和最低的误差值。具有三角形和两项高斯隶属函数的 ANFIS 模型分别给出了抗氧化活性(R = 0.87)和花青素含量(R = 0.90)的最佳结果。

结论

对模型的比较表明,在这种情况下,ANN 优于 ANFIS。考虑到应用系统的优势和在某些类似研究中获得的准确性,可以得出结论,这里提出的两种技术都具有很好的潜力,可以作为所提出属性的估算器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验