Suppr超能文献

应用转移模型和混合效应模型预测全血供者的血红蛋白水平。

Predicting hemoglobin levels in whole blood donors using transition models and mixed effects models.

机构信息

Department of Biostatistics, Erasmus MC, Rotterdam, the Netherlands.

出版信息

BMC Med Res Methodol. 2013 May 2;13:62. doi: 10.1186/1471-2288-13-62.

Abstract

BACKGROUND

To optimize the planning of blood donations but also to continue motivating the volunteers it is important to streamline the practical organization of the timing of donations. While donors are asked to return for donation after a suitable period, still a relevant proportion of blood donors is deferred from donation each year due to a too low hemoglobin level. Rejection of donation may demotivate the candidate donor and implies an inefficient planning of the donation process. Hence, it is important to predict the future hemoglobin level to improve the planning of donors' visits to the blood bank.

METHODS

The development of the hemoglobin prediction rule is based on longitudinal (panel) data from blood donations collected by Sanquin (the only blood product collecting and supplying organization in the Netherlands). We explored and contrasted two popular statistical models, i.e. the transition (autoregressive) model and the mixed effects model as plausible models to account for the dependence among subsequent hemoglobin levels within a donor.

RESULTS

The predictors of the future hemoglobin level are age, season, hemoglobin levels at the previous visits, and a binary variable indicating whether a donation was made at the previous visit. Based on cross-validation, the areas under the receiver operating characteristic curve (AUCs) for male donors are 0.83 and 0.81 for the transition model and the mixed effects model, respectively; for female donors we obtained AUC values of 0.73 and 0.72 for the transition model and the mixed effects model, respectively.

CONCLUSION

We showed that the transition models and the mixed effects models provide a much better prediction compared to a multiple linear regression model. In general, the transition model provides a somewhat better prediction than the mixed effects model, especially at high visit numbers. In addition, the transition model offers a better trade-off between sensitivity and specificity when varying the cut-off values for eligibility in predicted values. Hence transition models make the prediction of hemoglobin level more precise and may lead to less deferral from donation in the future.

摘要

背景

为了优化献血计划,同时继续激励志愿者,简化献血时间的实际组织非常重要。虽然要求献血者在合适的时间间隔后返回献血,但每年仍有相当一部分献血者因血红蛋白水平过低而被推迟献血。献血被拒绝可能会使候选献血者失去动力,并意味着献血过程的规划效率低下。因此,预测未来的血红蛋白水平对于改善献血者访问血库的计划非常重要。

方法

血红蛋白预测规则的开发基于 Sanquin(荷兰唯一的血液制品采集和供应组织)收集的献血纵向(面板)数据。我们探索并对比了两种流行的统计模型,即转移(自回归)模型和混合效应模型,作为解释献血者之间后续血红蛋白水平依赖性的合理模型。

结果

未来血红蛋白水平的预测因子包括年龄、季节、前几次访问的血红蛋白水平以及一个二进制变量,表示上次访问是否进行了献血。基于交叉验证,男性献血者的受试者工作特征曲线下面积(AUC)分别为 0.83 和 0.81,适用于转移模型和混合效应模型;对于女性献血者,我们得到的 AUC 值分别为 0.73 和 0.72,适用于转移模型和混合效应模型。

结论

我们表明,转移模型和混合效应模型提供了比多元线性回归模型更好的预测。一般来说,转移模型比混合效应模型提供了更好的预测,特别是在访问次数较高时。此外,在不同的预测值合格截止值之间,转移模型在灵敏度和特异性之间提供了更好的权衡。因此,转移模型使血红蛋白水平的预测更加精确,并可能导致未来更少的献血被推迟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6b/3667034/ed963f523395/1471-2288-13-62-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验