Suppr超能文献

一种用于离轴射野剂量预测误差的二维矩阵修正方法。

A two-dimensional matrix correction for off-axis portal dose prediction errors.

机构信息

Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260, USA.

出版信息

Med Phys. 2013 May;40(5):051704. doi: 10.1118/1.4800493.

Abstract

PURPOSE

This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ["An effective correction algorithm for off-axis portal dosimetry errors," Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry.

METHODS

We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface.

RESULTS

Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As in the 1D correction case, the 2D algorithm leaves the portal dosimetry process virtually unchanged in the central portion of the detector, and thus these correction algorithms are not needed for centrally located fields of moderate size (at least, in the case of 6 MV beam energy).

CONCLUSION

The 2D correction improves the portal dosimetry results for those fields for which the 1D correction proves insufficient, especially in the inplane, off-axis regions of the detector. This 2D correction neglects the relatively smaller discrepancies that may be caused by backscatter from nonuniform machine components downstream from the detecting layer.

摘要

目的

本研究是贝利等人发表的改进的门控剂量学校准程序的后续研究。["轴外门控剂量学误差的有效校正算法",《医学物理学》36,4089-4094(2009)]。一种商业的门控剂量预测系统在离轴距离增加时,显示出测量图像与预测图像之间高达 15%(校准单位)的差异。以前的改进校准程序在检测表面的大多数区域都考虑到了这些离轴效应,但受到径向对称的简单假设的限制。

方法

我们发现,对每个校准图像应用二维(2D)矩阵校正,可以在检测表面的所有区域中补偿离轴预测误差,包括在进行径向校正后仍然存在问题的区域。校正矩阵是通过对跨越整个检测表面的预测图像和测量图像进行定量比较得到的。校正矩阵的剂量线性度进行了验证,并在一些测试场地上进行了验证。2D 校正被用于回顾性地检查 22 个离轴、不对称的电子补偿乳房场,5 个强度调制的脑场(中高调制)为了在离轴较远的位置进行输送而进行了处理,以及 29 个在检测表面中心部分具有不同复杂性的强度调制的临床场。

结果

在离轴测试场和临床场中使用矩阵校正,预测与测量的门控剂量吻合度提高了 15%,在检测表面的某些区域产生了比径向校正更好的 10%的吻合度。使用 3 毫米、3%整体、10%剂量阈值的伽马评估分析预测与测量的门控剂量图像,表明矩阵校正可使通过率提高高达 75%,产生的通过率比单独使用径向校正技术高 30%。与 1D 校正情况一样,2D 算法在探测器的中心部分几乎不改变门控剂量学过程,因此对于中等大小的中心位置的场(至少在 6MV 射线能量的情况下)不需要这些校正算法。

结论

2D 校正提高了 1D 校正证明不足的那些场的门控剂量学结果,特别是在探测器的平面内离轴区域。这种 2D 校正忽略了可能由于检测层下游的非均匀机器部件的反向散射引起的相对较小的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验