The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan.
Dev Growth Differ. 2013 May;55(4):491-507. doi: 10.1111/dgd.12064. Epub 2013 May 2.
During the past decade, several novel fluorescence microscopy techniques have emerged that achieve incredible spatial and temporal resolution beyond the diffraction limit. These microscopy techniques depend on altered optical setups, unique fluorescent probes, or post-imaging analysis. Many of these techniques also depend strictly on the use of unique fluorescent proteins (FPs) with special photoswitching properties. These photoswitchable FPs are capable of switching between two states in response to light. All localization precision and patterned illumination techniques-such as photo-activation localization microscopy, stochastic optical reconstruction microscopy, reversible saturable optically linear transitions, and saturated structured illumination microscopy-take advantage of these inherent switching properties to achieve superior spatial resolution. This review provides extensive analysis of the positive and negative aspects of photoswitchable FPs, highlighting their application in diffraction-unlimited imaging and suggesting the most suitable fluorescent proteins for superresolution imaging.
在过去的十年中,已经出现了几种新型的荧光显微镜技术,它们在超越衍射极限的情况下实现了令人难以置信的空间和时间分辨率。这些显微镜技术依赖于改变的光学设置、独特的荧光探针或成像后分析。其中许多技术也严格依赖于具有特殊光开关特性的独特荧光蛋白(FP)的使用。这些光可切换的 FP 能够响应光在两种状态之间切换。所有的定位精度和图案化照明技术,如光激活定位显微镜、随机光学重建显微镜、可逆饱和光线性跃迁和饱和结构照明显微镜,都利用这些固有开关特性来实现更高的空间分辨率。本综述广泛分析了光可切换 FP 的优缺点,强调了它们在无衍射成像中的应用,并提出了最适合超分辨率成像的荧光蛋白。