Gupta Sharad K, Sur Souvik, Prasad Ojha Rajendra, Tandon Vibha
Dr B. R. Ambedkar Center for Biomedical Research, Delhi, India.
Mol Biosyst. 2013 Jul;9(7):1958-71. doi: 10.1039/c3mb25561a. Epub 2013 May 1.
This paper describes the synthesis of a novel 8-aza-7-deazapurin-2,6-diamine (DPP)-containing peptide nucleic acid (PNA) monomer and Boc protecting group-based oligomerization of PNA, replacing adenine (A) with DPP monomers in the PNA strand. The PNA oligomers were synthesized against the biologically relevant SV40 promoter region (2494-AATTTTTTTTATTTA-2508) of pEGFP-N3 plasmid. The DPP-PNA·DNA duplex showed enhanced stability as compared to normal duplex (A-PNA·DNA). The electronic distribution of DPP monomer suggested that DPP had better electron donor properties over 2,6-diamino purine. UV melting and thermodynamic analysis revealed that the PNA oligomer containing a diaminopyrazolo(3,4-d)pyrimidine moiety (DPP) stabilized the PNA·DNA hybrids compared to A-PNA·DNA. DPP-PNA·DNA duplex showed higher water activity (Δnw = 38.5) in comparison to A-PNA·DNA duplex (Δnw = 14.5). The 50 ns molecular dynamics simulations of PNA·DNA duplex containing DPP or unmodified nucleobase-A showed average H-bond distances in the DPP-dT base pair of 2.90 Å (OH-N bond) and 2.91 Å (NH-N bond), which were comparably shorter than in the A-dT base pair, in which the average distances were 3.18 Å (OH-N bond) and 2.97 Å (NH-N bond), and there was one additional H-bond in the DPP-dT base pair of around 2.98 Å (O2H-N2 bond), supporting the higher stability of DPP-PNA·DNA. The analysis of molecular dynamics simulation data showed that the system binding free energy increased at a rate of approximately -4.5 kcal mol(-1) per DPP base of the PNA·DNA duplex. In summary, increased thermal stability, stronger hydrogen bonding and more stable conformation in the DPP-PNA·DNA duplex make it a better candidate as antisense/antigene therapeutic agents.
本文描述了一种新型含8-氮杂-7-脱氮嘌呤-2,6-二胺(DPP)的肽核酸(PNA)单体的合成以及基于Boc保护基团的PNA寡聚化,即在PNA链中用DPP单体取代腺嘌呤(A)。针对pEGFP-N3质粒的生物学相关SV40启动子区域(2494 - AATTTTTTTTATTTA - 2508)合成了PNA寡聚物。与正常双链体(A - PNA·DNA)相比,DPP - PNA·DNA双链体显示出更高的稳定性。DPP单体的电子分布表明,与2,6 - 二氨基嘌呤相比,DPP具有更好的给电子性能。紫外熔解和热力学分析表明,与A - PNA·DNA相比,含有二氨基吡唑并[3,4 - d]嘧啶部分(DPP)的PNA寡聚物稳定了PNA·DNA杂交体。与A - PNA·DNA双链体(Δnw = 14.5)相比,DPP - PNA·DNA双链体显示出更高的水活性(Δnw = 38.5)。对含有DPP或未修饰核碱基 - A的PNA·DNA双链体进行的50 ns分子动力学模拟显示,DPP - dT碱基对中OH - N键的平均氢键距离为2.90 Å,NH - N键的平均氢键距离为2.91 Å,这比A - dT碱基对中的平均距离短,A - dT碱基对中OH - N键的平均距离为3.18 Å,NH - N键的平均距离为2.97 Å,并且DPP - dT碱基对中还有一个约2.98 Å(O2H - N2键)的额外氢键,这支持了DPP - PNA·DNA具有更高的稳定性。分子动力学模拟数据分析表明,PNA·DNA双链体每一个DPP碱基的系统结合自由能以约 - 4.5 kcal mol(-1)的速率增加。总之,DPP - PNA·DNA双链体中热稳定性的提高、更强的氢键作用和更稳定的构象使其成为更好的反义/反基因治疗剂候选物。