Acharya U R, Vinitha Sree S, Mookiah M R K, Yantri R, Molinari F, Zieleźnik W, Małyszek-Tumidajewicz J, Stępień B, Bardales R H, Witkowska A, Suri J S
Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore.
Proc Inst Mech Eng H. 2013 Jul;227(7):788-98. doi: 10.1177/0954411913483637. Epub 2013 Apr 16.
Hashimoto's thyroiditis is the most common type of inflammation of the thyroid gland, and accurate diagnosis of Hashimoto's thyroiditis would be helpful to better manage the disease process and predict thyroid failure. Most of the published computer-based techniques that use ultrasound thyroid images for Hashimoto's thyroiditis diagnosis are limited by lack of procedure standardization because individual investigators use various initial ultrasound settings. This article presents a computer-aided diagnostic technique that uses grayscale features and classifiers to provide a more objective and reproducible classification of normal and Hashimoto's thyroiditis-affected cases. In this paradigm, we extracted grayscale features based on entropy, Gabor wavelet, moments, image texture, and higher order spectra from the 100 normal and 100 Hashimoto's thyroiditis-affected ultrasound thyroid images. Significant features were selected using t-test. The resulting feature vectors were used to build the following three classifiers using tenfold stratified cross validation technique: support vector machine, k-nearest neighbor, and radial basis probabilistic neural network. Our results show that a combination of 12 features coupled with support vector machine classifier with the polynomial kernel of order 1 and linear kernel gives the highest accuracy of 80%, sensitivity of 76%, specificity of 84%, and positive predictive value of 83.3% for the detection of Hashimoto's thyroiditis. The proposed computer-aided diagnostic system uses novel features that have not yet been explored for Hashimoto's thyroiditis diagnosis. Even though the accuracy is only 80%, the presented preliminary results are encouraging to warrant analysis of more such powerful features on larger databases.
桥本甲状腺炎是最常见的甲状腺炎症类型,准确诊断桥本甲状腺炎有助于更好地管理疾病进程并预测甲状腺功能减退。大多数已发表的基于计算机的技术,即利用甲状腺超声图像诊断桥本甲状腺炎,由于个体研究者使用各种不同的初始超声设置,缺乏程序标准化,因而受到限制。本文提出一种计算机辅助诊断技术,该技术利用灰度特征和分类器对正常病例和受桥本甲状腺炎影响的病例进行更客观、可重复的分类。在此模式下,我们从100例正常甲状腺超声图像和100例受桥本甲状腺炎影响的甲状腺超声图像中,基于熵、伽柏小波、矩、图像纹理和高阶谱提取灰度特征。使用t检验选择显著特征。所得特征向量用于采用十折分层交叉验证技术构建以下三种分类器:支持向量机、k近邻和径向基概率神经网络。我们的结果表明,12个特征与具有一阶多项式核和线性核的支持向量机分类器相结合,在检测桥本甲状腺炎时,准确率最高可达80%,灵敏度为76%,特异性为84%,阳性预测值为83.3%。所提出的计算机辅助诊断系统使用了尚未用于桥本甲状腺炎诊断探索的新特征。尽管准确率仅为80%,但所呈现的初步结果令人鼓舞,足以保证在更大的数据库上对更多此类强大特征进行分析。