Saba Luca, Maindarkar Mahesh, Khanna Narendra N, Puvvula Anudeep, Faa Gavino, Isenovic Esma, Johri Amer, Fouda Mostafa M, Tiwari Ekta, Kalra Manudeep K, Suri Jasjit S
Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy.
School of Bioengineering Sciences and Research, MIT Art, Design and Technology University, 412021 Pune, India.
Rev Cardiovasc Med. 2024 Dec 28;25(12):463. doi: 10.31083/j.rcm2512463. eCollection 2024 Dec.
Obstructive sleep apnea (OSA) is a severe condition associated with numerous cardiovascular complications, including heart failure. The complex biological and morphological relationship between OSA and atherosclerotic cardiovascular disease (ASCVD) poses challenges in predicting adverse cardiovascular outcomes. While artificial intelligence (AI) has shown potential for predicting cardiovascular disease (CVD) and stroke risks in other conditions, there is a lack of detailed, bias-free, and compressed AI models for ASCVD and stroke risk stratification in OSA patients. This study aimed to address this gap by proposing three hypotheses: (i) a strong relationship exists between OSA and ASCVD/stroke, (ii) deep learning (DL) can stratify ASCVD/stroke risk in OSA patients using surrogate carotid imaging, and (iii) including OSA risk as a covariate with cardiovascular risk factors can improve CVD risk stratification.
The study employed the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) search strategy, yielding 191 studies that link OSA with coronary, carotid, and aortic atherosclerotic vascular diseases. This research investigated the link between OSA and CVD, explored DL solutions for OSA detection, and examined the role of DL in utilizing carotid surrogate biomarkers by saving costs. Lastly, we benchmark our strategy against previous studies.
(i) This study found that CVD and OSA are indirectly or directly related. (ii) DL models demonstrated significant potential in improving OSA detection and proved effective in CVD risk stratification using carotid ultrasound as a biomarker. (iii) Additionally, DL was shown to be useful for CVD risk stratification in OSA patients; (iv) There are important AI attributes such as AI-bias, AI-explainability, AI-pruning, and AI-cloud, which play an important role in CVD risk for OSA patients.
DL provides a powerful tool for CVD risk stratification in OSA patients. These results can promote several recommendations for developing unique, bias-free, and explainable AI algorithms for predicting ASCVD and stroke risks in patients with OSA.
阻塞性睡眠呼吸暂停(OSA)是一种严重疾病,与包括心力衰竭在内的多种心血管并发症相关。OSA与动脉粥样硬化性心血管疾病(ASCVD)之间复杂的生物学和形态学关系给预测不良心血管结局带来了挑战。虽然人工智能(AI)在预测其他情况下的心血管疾病(CVD)和中风风险方面已显示出潜力,但缺乏用于OSA患者ASCVD和中风风险分层的详细、无偏差且精简的AI模型。本研究旨在通过提出三个假设来填补这一空白:(i)OSA与ASCVD/中风之间存在密切关系;(ii)深度学习(DL)可利用替代颈动脉成像对OSA患者的ASCVD/中风风险进行分层;(iii)将OSA风险作为心血管危险因素的协变量纳入可改善CVD风险分层。
本研究采用系统评价和Meta分析的首选报告项目(PRISMA)搜索策略,得到191项将OSA与冠状动脉、颈动脉和主动脉粥样硬化性血管疾病联系起来的研究。本研究调查了OSA与CVD之间的联系,探索了用于OSA检测的DL解决方案,并通过节省成本研究了DL在利用颈动脉替代生物标志物方面的作用。最后,我们将我们的策略与先前的研究进行了对比。
(i)本研究发现CVD与OSA间接或直接相关。(ii)DL模型在改善OSA检测方面显示出巨大潜力,并证明使用颈动脉超声作为生物标志物在CVD风险分层中有效。(iii)此外,DL被证明对OSA患者的CVD风险分层有用;(iv)存在重要的AI属性,如AI偏差、AI可解释性、AI剪枝和AI云,它们在OSA患者的CVD风险中起重要作用。
DL为OSA患者的CVD风险分层提供了一个强大的工具。这些结果可为开发用于预测OSA患者ASCVD和中风风险的独特、无偏差且可解释的AI算法提出多项建议。