Suppr超能文献

小鼠视觉皮层 VI 层的皮质-膝状体投射神经元的同源和异源突触长时程可塑性。

Reciprocal Homosynaptic and heterosynaptic long-term plasticity of corticogeniculate projection neurons in layer VI of the mouse visual cortex.

机构信息

Brain Science Institute RIKEN, Wako, 351-0198 Japan, PRESTO, Japan Science and Technology Agency, Tokyo, 102-0075 Japan.

出版信息

J Neurosci. 2013 May 1;33(18):7787-98. doi: 10.1523/JNEUROSCI.5350-12.2013.

Abstract

Most neurons in layer VI of the visual cortex project to the dorsal lateral geniculate nucleus (dLGN). These corticogeniculate projection neurons (CG cells) receive top-down synaptic inputs from upper layers (ULs) and bottom-up inputs from the underlying white matter (WM). Use-dependent plasticity of these synapses in layer VI of the cortex has received less attention than in other layers. In the present study, we used a retrograde tracer injected into dLGN to identify CG cells, and, by analyzing EPSPs evoked by electrical stimulation of the UL or WM site, examined whether these synapses show long-term synaptic plasticity. Theta-burst stimulation induced long-term potentiation (LTP) of activated synapses (hom-LTP) and long-term depression (LTD) of nonactivated synapses (het-LTD) in either pathway. The paired-pulse stimulation protocol and the analysis of coefficient variation of EPSPs suggested postsynaptic induction of these changes except UL-induced het-LTD, which may be presynaptic in origin. Intracellular injection of a Ca(2+)-chelator suggested an involvement of postsynaptic Ca(2+) rise in all types of long-term plasticity. Pharmacological analysis indicated that NMDA receptors and type-5 metabotropic glutamate receptors are involved in WM-induced and UL-induced plasticity, respectively. Analysis with inhibitors and/or in transgenic mice suggested an involvement of cannabinoid type 1 receptors and calcineurin in UL-induced and WM-induced het-LTD, respectively. These results suggest that hom-LTP and het-LTD may play a role in switching the top-down or bottom-up regulation of CG cell function and/or in maintaining stability of synaptic transmission efficacy through different molecular mechanisms.

摘要

大多数视觉皮层 VI 层的神经元投射到背外侧膝状体核 (dLGN)。这些皮质-膝状体投射神经元 (CG 细胞) 从上层 (ULs) 接收自上而下的突触输入,从下面的白质 (WM) 接收自下而上的输入。与其他层相比,皮层 VI 层这些突触的依赖使用的可塑性受到的关注较少。在本研究中,我们使用逆行示踪剂注射到 dLGN 来识别 CG 细胞,并通过分析 UL 或 WM 部位电刺激引起的 EPSP,检查这些突触是否表现出长期突触可塑性。θ爆发刺激诱导激活突触的长时程增强 (LTP)(同源 LTP)和非激活突触的长时程抑制 (LTD)(异源 LTD)在两种途径中均有发生。成对脉冲刺激方案和 EPSP 变异系数分析表明,这些变化是突触后诱导的,除了 UL 诱导的异源 LTD 可能是突触前起源的。细胞内注射 Ca(2+) 螯合剂表明,所有类型的长期可塑性都涉及突触后 Ca(2+) 升高。药理学分析表明,NMDA 受体和 5 型代谢型谷氨酸受体分别参与 WM 诱导和 UL 诱导的可塑性。抑制剂和/或转基因小鼠的分析表明,大麻素 1 型受体和钙调神经磷酸酶分别参与 UL 诱导和 WM 诱导的异源 LTD。这些结果表明,同源 LTP 和异源 LTD 可能通过不同的分子机制在 CG 细胞功能的自上而下或自下而上调节的转换中发挥作用,或者在维持突触传递效能的稳定性中发挥作用。

相似文献

5
Induction of long-term potentiation and long-term depression is cell-type specific in the spinal cord.
Pain. 2015 Apr;156(4):618-625. doi: 10.1097/01.j.pain.0000460354.09622.ec.
6
Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus.
Cereb Cortex. 2016 Aug;26(8):3637-3654. doi: 10.1093/cercor/bhw172. Epub 2016 Jun 9.
10
Retinal input regulates the timing of corticogeniculate innervation.
J Neurosci. 2013 Jun 12;33(24):10085-97. doi: 10.1523/JNEUROSCI.5271-12.2013.

引用本文的文献

1
Heterosynaptic plasticity-induced modulation of synapses.
J Physiol Sci. 2023 Dec 6;73(1):33. doi: 10.1186/s12576-023-00893-1.
2
Endocannabinoids at the synapse and beyond: implications for neuropsychiatric disease pathophysiology and treatment.
Neuropsychopharmacology. 2023 Jan;48(1):37-53. doi: 10.1038/s41386-022-01438-7. Epub 2022 Sep 13.
3
Natural-gradient learning for spiking neurons.
Elife. 2022 Apr 25;11:e66526. doi: 10.7554/eLife.66526.
4
Brain is modulated by neuronal plasticity during postnatal development.
J Physiol Sci. 2021 Nov 17;71(1):34. doi: 10.1186/s12576-021-00819-9.
5
Functional Topography and Development of Inhibitory Reticulothalamic Barreloid Projections.
Front Neuroanat. 2018 Oct 31;12:87. doi: 10.3389/fnana.2018.00087. eCollection 2018.
6
Histamine H Heteroreceptors Suppress Glutamatergic and GABAergic Synaptic Transmission in the Rat Insular Cortex.
Front Neural Circuits. 2017 Nov 9;11:85. doi: 10.3389/fncir.2017.00085. eCollection 2017.
7
Rescue of glutamate transport in the lateral habenula alleviates depression- and anxiety-like behaviors in ethanol-withdrawn rats.
Neuropharmacology. 2018 Feb;129:47-56. doi: 10.1016/j.neuropharm.2017.11.013. Epub 2017 Nov 8.
8
Form and Function of Sleep Spindles across the Lifespan.
Neural Plast. 2016;2016:6936381. doi: 10.1155/2016/6936381. Epub 2016 Apr 14.
9
Homeostatic role of heterosynaptic plasticity: models and experiments.
Front Comput Neurosci. 2015 Jul 13;9:89. doi: 10.3389/fncom.2015.00089. eCollection 2015.
10
Heterosynaptic plasticity: multiple mechanisms and multiple roles.
Neuroscientist. 2014 Oct;20(5):483-98. doi: 10.1177/1073858414529829. Epub 2014 Apr 11.

本文引用的文献

1
Intracortical convergence of layer 6 neurons.
Neuroreport. 2012 Aug 22;23(12):736-40. doi: 10.1097/WNR.0b013e328356c1aa.
2
Gain control by layer six in cortical circuits of vision.
Nature. 2012 Feb 22;483(7387):47-52. doi: 10.1038/nature10835.
5
Developmental switch in the polarity of experience-dependent synaptic changes in layer 6 of mouse visual cortex.
J Neurophysiol. 2011 Nov;106(5):2499-505. doi: 10.1152/jn.00111.2011. Epub 2011 Aug 3.
6
Visual experience induces long-term potentiation in the primary visual cortex.
J Neurosci. 2010 Dec 1;30(48):16304-13. doi: 10.1523/JNEUROSCI.4333-10.2010.
7
Neocortical layer 6, a review.
Front Neuroanat. 2010 Mar 31;4:13. doi: 10.3389/fnana.2010.00013. eCollection 2010.
8
Difference in binocularity and ocular dominance plasticity between GABAergic and excitatory cortical neurons.
J Neurosci. 2010 Jan 27;30(4):1551-9. doi: 10.1523/JNEUROSCI.5025-09.2010.
9
Endocannabinoid-mediated control of synaptic transmission.
Physiol Rev. 2009 Jan;89(1):309-80. doi: 10.1152/physrev.00019.2008.
10
Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex.
Philos Trans R Soc Lond B Biol Sci. 2009 Feb 12;364(1515):357-67. doi: 10.1098/rstb.2008.0198.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验